Mister Exam

Other calculators

Integral of d*x/(x*sqrd(ln^2x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |         d*x           
 |  ------------------ dx
 |       _____________   
 |      /    2           
 |  x*\/  log (x) + 1    
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{d x}{x \sqrt{\log{\left(x \right)}^{2} + 1}}\, dx$$
Integral((d*x)/((x*sqrt(log(x)^2 + 1))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                /                   
 |                                |                    
 |        d*x                     |        1           
 | ------------------ dx = C + d* | ---------------- dx
 |      _____________             |    _____________   
 |     /    2                     |   /        2       
 | x*\/  log (x) + 1              | \/  1 + log (x)    
 |                                |                    
/                                /                     
$$\int \frac{d x}{x \sqrt{\log{\left(x \right)}^{2} + 1}}\, dx = C + d \int \frac{1}{\sqrt{\log{\left(x \right)}^{2} + 1}}\, dx$$
The answer [src]
    1                    
    /                    
   |                     
   |         1           
d* |  ---------------- dx
   |     _____________   
   |    /        2       
   |  \/  1 + log (x)    
   |                     
  /                      
  0                      
$$d \int\limits_{0}^{1} \frac{1}{\sqrt{\log{\left(x \right)}^{2} + 1}}\, dx$$
=
=
    1                    
    /                    
   |                     
   |         1           
d* |  ---------------- dx
   |     _____________   
   |    /        2       
   |  \/  1 + log (x)    
   |                     
  /                      
  0                      
$$d \int\limits_{0}^{1} \frac{1}{\sqrt{\log{\left(x \right)}^{2} + 1}}\, dx$$
d*Integral(1/sqrt(1 + log(x)^2), (x, 0, 1))

    Use the examples entering the upper and lower limits of integration.