Mister Exam

Other calculators

Integral of d*x/((x*log(x))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 100           
  /            
 |             
 |    d*x      
 |  -------- dx
 |  x*log(x)   
 |             
/              
10             
$$\int\limits_{10}^{100} \frac{d x}{x \log{\left(x \right)}}\, dx$$
Integral((d*x)/((x*log(x))), (x, 10, 100))
The answer (Indefinite) [src]
  /                         
 |                          
 |   d*x                    
 | -------- dx = C + d*li(x)
 | x*log(x)                 
 |                          
/                           
$$\int \frac{d x}{x \log{\left(x \right)}}\, dx = C + d \operatorname{li}{\left(x \right)}$$
The answer [src]
d*li(100) - d*li(10)
$$- d \operatorname{li}{\left(10 \right)} + d \operatorname{li}{\left(100 \right)}$$
=
=
d*li(100) - d*li(10)
$$- d \operatorname{li}{\left(10 \right)} + d \operatorname{li}{\left(100 \right)}$$
d*li(100) - d*li(10)

    Use the examples entering the upper and lower limits of integration.