Integral of (d*x)/(x*ln^5*x) dx
The solution
The answer (Indefinite)
[src]
/
| 2 3
| d*x d*li(x) -6*d*x - d*x*log (x) - d*x*log (x) - 2*d*x*log(x)
| --------- dx = C + ------- + -------------------------------------------------
| 5 24 4
| x*log (x) 24*log (x)
|
/
∫xlog(x)5dxdx=C+24dli(x)+24log(x)4−dxlog(x)3−dxlog(x)2−2dxlog(x)−6dx
d*li(E) 5*E*d
oo*sign(d) - ------- + -----
24 12
−24dli(e)+125ed+∞sign(d)
=
d*li(E) 5*E*d
oo*sign(d) - ------- + -----
24 12
−24dli(e)+125ed+∞sign(d)
oo*sign(d) - d*li(E)/24 + 5*E*d/12
Use the examples entering the upper and lower limits of integration.