Integral of cbrt(x+1) dx
The solution
Detail solution
-
Let u=x+1.
Then let du=dx and substitute du:
∫3udu
-
The integral of un is n+1un+1 when n=−1:
∫3udu=43u34
Now substitute u back in:
43(x+1)34
-
Now simplify:
43(x+1)34
-
Add the constant of integration:
43(x+1)34+constant
The answer is:
43(x+1)34+constant
The answer (Indefinite)
[src]
/
| 4/3
| 3 _______ 3*(x + 1)
| \/ x + 1 dx = C + ------------
| 4
/
∫3x+1dx=C+43(x+1)34
The graph
3 ___ 3 ___
3*\/ 2 9*\/ 6
- ------- + -------
2 2
−2332+2936
=
3 ___ 3 ___
3*\/ 2 9*\/ 6
- ------- + -------
2 2
−2332+2936
-3*2^(1/3)/2 + 9*6^(1/3)/2
Use the examples entering the upper and lower limits of integration.