Mister Exam

Integral of cbrt(x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5             
  /             
 |              
 |  3 _______   
 |  \/ x + 1  dx
 |              
/               
1               
15x+13dx\int\limits_{1}^{5} \sqrt[3]{x + 1}\, dx
Integral((x + 1)^(1/3), (x, 1, 5))
Detail solution
  1. Let u=x+1u = x + 1.

    Then let du=dxdu = dx and substitute dudu:

    u3du\int \sqrt[3]{u}\, du

    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

      u3du=3u434\int \sqrt[3]{u}\, du = \frac{3 u^{\frac{4}{3}}}{4}

    Now substitute uu back in:

    3(x+1)434\frac{3 \left(x + 1\right)^{\frac{4}{3}}}{4}

  2. Now simplify:

    3(x+1)434\frac{3 \left(x + 1\right)^{\frac{4}{3}}}{4}

  3. Add the constant of integration:

    3(x+1)434+constant\frac{3 \left(x + 1\right)^{\frac{4}{3}}}{4}+ \mathrm{constant}


The answer is:

3(x+1)434+constant\frac{3 \left(x + 1\right)^{\frac{4}{3}}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                             4/3
 | 3 _______          3*(x + 1)   
 | \/ x + 1  dx = C + ------------
 |                         4      
/                                 
x+13dx=C+3(x+1)434\int \sqrt[3]{x + 1}\, dx = C + \frac{3 \left(x + 1\right)^{\frac{4}{3}}}{4}
The graph
1.05.01.52.02.53.03.54.04.5010
The answer [src]
    3 ___     3 ___
  3*\/ 2    9*\/ 6 
- ------- + -------
     2         2   
3232+9632- \frac{3 \sqrt[3]{2}}{2} + \frac{9 \sqrt[3]{6}}{2}
=
=
    3 ___     3 ___
  3*\/ 2    9*\/ 6 
- ------- + -------
     2         2   
3232+9632- \frac{3 \sqrt[3]{2}}{2} + \frac{9 \sqrt[3]{6}}{2}
-3*2^(1/3)/2 + 9*6^(1/3)/2
Numerical answer [src]
6.28716109290232
6.28716109290232

    Use the examples entering the upper and lower limits of integration.