Mister Exam

Other calculators

Integral of dx/(x^3)+cbrt(x)+1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                    
  /                    
 |                     
 |  /1    3 ___    \   
 |  |-- + \/ x  + 1| dx
 |  | 3            |   
 |  \x             /   
 |                     
/                      
2                      
2((x3+1x3)+1)dx\int\limits_{2}^{\infty} \left(\left(\sqrt[3]{x} + \frac{1}{x^{3}}\right) + 1\right)\, dx
Integral(1/(x^3) + x^(1/3) + 1, (x, 2, oo))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x3dx=3x434\int \sqrt[3]{x}\, dx = \frac{3 x^{\frac{4}{3}}}{4}

      1. Don't know the steps in finding this integral.

        But the integral is

        12x2- \frac{1}{2 x^{2}}

      The result is: 3x43412x2\frac{3 x^{\frac{4}{3}}}{4} - \frac{1}{2 x^{2}}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: 3x434+x12x2\frac{3 x^{\frac{4}{3}}}{4} + x - \frac{1}{2 x^{2}}

  2. Add the constant of integration:

    3x434+x12x2+constant\frac{3 x^{\frac{4}{3}}}{4} + x - \frac{1}{2 x^{2}}+ \mathrm{constant}


The answer is:

3x434+x12x2+constant\frac{3 x^{\frac{4}{3}}}{4} + x - \frac{1}{2 x^{2}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                           
 |                                         4/3
 | /1    3 ___    \               1     3*x   
 | |-- + \/ x  + 1| dx = C + x - ---- + ------
 | | 3            |                 2     4   
 | \x             /              2*x          
 |                                            
/                                             
((x3+1x3)+1)dx=C+3x434+x12x2\int \left(\left(\sqrt[3]{x} + \frac{1}{x^{3}}\right) + 1\right)\, dx = C + \frac{3 x^{\frac{4}{3}}}{4} + x - \frac{1}{2 x^{2}}
The answer [src]
oo
\infty
=
=
oo
\infty
oo

    Use the examples entering the upper and lower limits of integration.