Mister Exam

Other calculators

Integral of (cbrt(x))-(1/(x^2-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /3 ___       1   \   
 |  |\/ x  - 1*------| dx
 |  |           2    |   
 |  \          x  - 1/   
 |                       
/                        
0                        
01(x311x21)dx\int\limits_{0}^{1} \left(\sqrt[3]{x} - 1 \cdot \frac{1}{x^{2} - 1}\right)\, dx
Integral(x^(1/3) - 1/(x^2 - 1*1), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=3x434\int \sqrt[3]{x}\, dx = \frac{3 x^{\frac{4}{3}}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (1x21)dx=1x21dx\int \left(- \frac{1}{x^{2} - 1}\right)\, dx = - \int \frac{1}{x^{2} - 1}\, dx

      1. Rewrite the integrand:

        1x21=1x+1+1x12\frac{1}{x^{2} - 1} = \frac{- \frac{1}{x + 1} + \frac{1}{x - 1}}{2}

      2. The integral of a constant times a function is the constant times the integral of the function:

        1x+1+1x12dx=(1x+1+1x1)dx2\int \frac{- \frac{1}{x + 1} + \frac{1}{x - 1}}{2}\, dx = \frac{\int \left(- \frac{1}{x + 1} + \frac{1}{x - 1}\right)\, dx}{2}

        1. Integrate term-by-term:

          1. The integral of 1x1\frac{1}{x - 1} is log(x1)\log{\left(x - 1 \right)}.

          1. The integral of a constant times a function is the constant times the integral of the function:

            (1x+1)dx=1x+1dx\int \left(- \frac{1}{x + 1}\right)\, dx = - \int \frac{1}{x + 1}\, dx

            1. The integral of 1x+1\frac{1}{x + 1} is log(x+1)\log{\left(x + 1 \right)}.

            So, the result is: log(x+1)- \log{\left(x + 1 \right)}

          The result is: log(x1)log(x+1)\log{\left(x - 1 \right)} - \log{\left(x + 1 \right)}

        So, the result is: log(x1)2log(x+1)2\frac{\log{\left(x - 1 \right)}}{2} - \frac{\log{\left(x + 1 \right)}}{2}

      So, the result is: log(x1)2+log(x+1)2- \frac{\log{\left(x - 1 \right)}}{2} + \frac{\log{\left(x + 1 \right)}}{2}

    The result is: 3x434log(x1)2+log(x+1)2\frac{3 x^{\frac{4}{3}}}{4} - \frac{\log{\left(x - 1 \right)}}{2} + \frac{\log{\left(x + 1 \right)}}{2}

  2. Add the constant of integration:

    3x434log(x1)2+log(x+1)2+constant\frac{3 x^{\frac{4}{3}}}{4} - \frac{\log{\left(x - 1 \right)}}{2} + \frac{\log{\left(x + 1 \right)}}{2}+ \mathrm{constant}


The answer is:

3x434log(x1)2+log(x+1)2+constant\frac{3 x^{\frac{4}{3}}}{4} - \frac{\log{\left(x - 1 \right)}}{2} + \frac{\log{\left(x + 1 \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                             
 |                                                           4/3
 | /3 ___       1   \          log(1 + x)   log(-1 + x)   3*x   
 | |\/ x  - 1*------| dx = C + ---------- - ----------- + ------
 | |           2    |              2             2          4   
 | \          x  - 1/                                           
 |                                                              
/                                                               
log(x+1)2+3x434log(x1)2{{\log \left(x+1\right)}\over{2}}+{{3\,x^{{{4}\over{3}}}}\over{4}}- {{\log \left(x-1\right)}\over{2}}
The answer [src]
     pi*I
oo + ----
      2  
%a{\it \%a}
=
=
     pi*I
oo + ----
      2  
+iπ2\infty + \frac{i \pi}{2}
Numerical answer [src]
23.1420519833869
23.1420519833869

    Use the examples entering the upper and lower limits of integration.