Mister Exam

Integral of cbrt(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4         
  /         
 |          
 |  3 ___   
 |  \/ x  dx
 |          
/           
1           
$$\int\limits_{1}^{4} \sqrt[3]{x}\, dx$$
Integral(x^(1/3), (x, 1, 4))
Detail solution
  1. The integral of is when :

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                     
 |                   4/3
 | 3 ___          3*x   
 | \/ x  dx = C + ------
 |                  4   
/                       
$${{3\,x^{{{4}\over{3}}}}\over{4}}$$
The graph
The answer [src]
  3      2/3
- - + 3*2   
  4         
$$3\,4^{{{1}\over{3}}}-{{3}\over{4}}$$
=
=
  3      2/3
- - + 3*2   
  4         
$$- \frac{3}{4} + 3 \cdot 2^{\frac{2}{3}}$$
Numerical answer [src]
4.0122031559046
4.0122031559046
The graph
Integral of cbrt(x) dx

    Use the examples entering the upper and lower limits of integration.