Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x/(sinx^2)^2 Integral of x/(sinx^2)^2
  • Integral of (sqrt(x)-2)^2/x Integral of (sqrt(x)-2)^2/x
  • Integral of (sin(3x))^5 Integral of (sin(3x))^5
  • Integral of e^xsin(x/2) Integral of e^xsin(x/2)
  • Identical expressions

  • ((ctg7x)^(one / two))/(sin^2x)
  • ((ctg7x) to the power of (1 divide by 2)) divide by ( sinus of squared x)
  • ((ctg7x) to the power of (one divide by two)) divide by ( sinus of squared x)
  • ((ctg7x)(1/2))/(sin2x)
  • ctg7x1/2/sin2x
  • ((ctg7x)^(1/2))/(sin²x)
  • ((ctg7x) to the power of (1/2))/(sin to the power of 2x)
  • ctg7x^1/2/sin^2x
  • ((ctg7x)^(1 divide by 2)) divide by (sin^2x)
  • ((ctg7x)^(1/2))/(sin^2x)dx

Integral of ((ctg7x)^(1/2))/(sin^2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |    __________   
 |  \/ cot(7*x)    
 |  ------------ dx
 |       2         
 |    sin (x)      
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sqrt{\cot{\left(7 x \right)}}}{\sin^{2}{\left(x \right)}}\, dx$$
Integral(sqrt(cot(7*x))/sin(x)^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                        /               
 |                        |                
 |   __________           |   __________   
 | \/ cot(7*x)            | \/ cot(7*x)    
 | ------------ dx = C +  | ------------ dx
 |      2                 |      2         
 |   sin (x)              |   sin (x)      
 |                        |                
/                        /                 
$$\int \frac{\sqrt{\cot{\left(7 x \right)}}}{\sin^{2}{\left(x \right)}}\, dx = C + \int \frac{\sqrt{\cot{\left(7 x \right)}}}{\sin^{2}{\left(x \right)}}\, dx$$
The answer [src]
  1                
  /                
 |                 
 |    __________   
 |  \/ cot(7*x)    
 |  ------------ dx
 |       2         
 |    sin (x)      
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sqrt{\cot{\left(7 x \right)}}}{\sin^{2}{\left(x \right)}}\, dx$$
=
=
  1                
  /                
 |                 
 |    __________   
 |  \/ cot(7*x)    
 |  ------------ dx
 |       2         
 |    sin (x)      
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sqrt{\cot{\left(7 x \right)}}}{\sin^{2}{\left(x \right)}}\, dx$$
Integral(sqrt(cot(7*x))/sin(x)^2, (x, 0, 1))
Numerical answer [src]
(1.2721447647717e+28 + 2.75641456236797j)
(1.2721447647717e+28 + 2.75641456236797j)

    Use the examples entering the upper and lower limits of integration.