Mister Exam

Integral of cotydy dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  cot(y)*1 dy
 |             
/              
0              
01cot(y)1dy\int\limits_{0}^{1} \cot{\left(y \right)} 1\, dy
Integral(cot(y)*1, (y, 0, 1))
Detail solution
  1. Rewrite the integrand:

    True\text{True}

  2. Don't know the steps in finding this integral.

    But the integral is

    log(sin(y))\log{\left(\sin{\left(y \right)} \right)}

  3. Add the constant of integration:

    log(sin(y))+constant\log{\left(\sin{\left(y \right)} \right)}+ \mathrm{constant}


The answer is:

log(sin(y))+constant\log{\left(\sin{\left(y \right)} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                              
 | cot(y)*1 dy = C + log(sin(y))
 |                              
/                               
cot(y)1dy=C+log(sin(y))\int \cot{\left(y \right)} 1\, dy = C + \log{\left(\sin{\left(y \right)} \right)}
The answer [src]
oo
\infty
=
=
oo
\infty
Numerical answer [src]
43.9178423877238
43.9178423877238

    Use the examples entering the upper and lower limits of integration.