Integral of 4sec(2x)tan(2x)dx dx
The solution
Detail solution
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2tan(u)sec(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫tan(u)sec(u)du=2∫tan(u)sec(u)du
-
The integral of secant times tangent is secant:
∫tan(u)sec(u)du=sec(u)
So, the result is: 2sec(u)
Now substitute u back in:
2sec(2x)
-
Add the constant of integration:
2sec(2x)+constant
The answer is:
2sec(2x)+constant
The answer (Indefinite)
[src]
/
|
| 4*sec(2*x)*tan(2*x) dx = C + 2*sec(2*x)
|
/
∫tan(2x)4sec(2x)dx=C+2sec(2x)
The graph
Use the examples entering the upper and lower limits of integration.