Mister Exam

Integral of 4sec(2x)tan(2x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -pi                       
 ----                      
  3                        
   /                       
  |                        
  |  4*sec(2*x)*tan(2*x) dx
  |                        
 /                         
 pi                        
 --                        
 3                         
π3π3tan(2x)4sec(2x)dx\int\limits_{\frac{\pi}{3}}^{- \frac{\pi}{3}} \tan{\left(2 x \right)} 4 \sec{\left(2 x \right)}\, dx
Integral((4*sec(2*x))*tan(2*x), (x, pi/3, -pi/3))
Detail solution
  1. Let u=2xu = 2 x.

    Then let du=2dxdu = 2 dx and substitute 2du2 du:

    2tan(u)sec(u)du\int 2 \tan{\left(u \right)} \sec{\left(u \right)}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      tan(u)sec(u)du=2tan(u)sec(u)du\int \tan{\left(u \right)} \sec{\left(u \right)}\, du = 2 \int \tan{\left(u \right)} \sec{\left(u \right)}\, du

      1. The integral of secant times tangent is secant:

        tan(u)sec(u)du=sec(u)\int \tan{\left(u \right)} \sec{\left(u \right)}\, du = \sec{\left(u \right)}

      So, the result is: 2sec(u)2 \sec{\left(u \right)}

    Now substitute uu back in:

    2sec(2x)2 \sec{\left(2 x \right)}

  2. Add the constant of integration:

    2sec(2x)+constant2 \sec{\left(2 x \right)}+ \mathrm{constant}


The answer is:

2sec(2x)+constant2 \sec{\left(2 x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                        
 | 4*sec(2*x)*tan(2*x) dx = C + 2*sec(2*x)
 |                                        
/                                         
tan(2x)4sec(2x)dx=C+2sec(2x)\int \tan{\left(2 x \right)} 4 \sec{\left(2 x \right)}\, dx = C + 2 \sec{\left(2 x \right)}
The graph
-1.0-0.8-0.6-0.4-0.20.00.20.40.60.81.0-5000050000
The answer [src]
nan
NaN\text{NaN}
=
=
nan
NaN\text{NaN}
nan
Numerical answer [src]
0.0
0.0
The graph
Integral of 4sec(2x)tan(2x)dx dx

    Use the examples entering the upper and lower limits of integration.