Mister Exam

Integral of 4sec(2x)tan(2x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -pi                       
 ----                      
  3                        
   /                       
  |                        
  |  4*sec(2*x)*tan(2*x) dx
  |                        
 /                         
 pi                        
 --                        
 3                         
$$\int\limits_{\frac{\pi}{3}}^{- \frac{\pi}{3}} \tan{\left(2 x \right)} 4 \sec{\left(2 x \right)}\, dx$$
Integral((4*sec(2*x))*tan(2*x), (x, pi/3, -pi/3))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of secant times tangent is secant:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 | 4*sec(2*x)*tan(2*x) dx = C + 2*sec(2*x)
 |                                        
/                                         
$$\int \tan{\left(2 x \right)} 4 \sec{\left(2 x \right)}\, dx = C + 2 \sec{\left(2 x \right)}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
0.0
0.0
The graph
Integral of 4sec(2x)tan(2x)dx dx

    Use the examples entering the upper and lower limits of integration.