p -- 81 / | | 2 | cos (x - 10*p) dx | / -p --- 8
Integral(cos(x - 10*p)^2, (x, -p/8, p/81))
/81*p\ /81*p\ /809*p\ /809*p\ 2/81*p\ 2/81*p\ 2/809*p\ 2/809*p\ cos|----|*sin|----| cos|-----|*sin|-----| p*cos |----| p*sin |----| p*cos |-----| p*sin |-----| \ 8 / \ 8 / \ 81 / \ 81 / \ 8 / \ 8 / \ 81 / \ 81 / ------------------- - --------------------- + ------------ + ------------ + ------------- + ------------- 2 2 16 16 162 162
=
/81*p\ /81*p\ /809*p\ /809*p\ 2/81*p\ 2/81*p\ 2/809*p\ 2/809*p\ cos|----|*sin|----| cos|-----|*sin|-----| p*cos |----| p*sin |----| p*cos |-----| p*sin |-----| \ 8 / \ 8 / \ 81 / \ 81 / \ 8 / \ 8 / \ 81 / \ 81 / ------------------- - --------------------- + ------------ + ------------ + ------------- + ------------- 2 2 16 16 162 162
cos(81*p/8)*sin(81*p/8)/2 - cos(809*p/81)*sin(809*p/81)/2 + p*cos(81*p/8)^2/16 + p*sin(81*p/8)^2/16 + p*cos(809*p/81)^2/162 + p*sin(809*p/81)^2/162
Use the examples entering the upper and lower limits of integration.