Integral of Cos^5xsinx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u5du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u5)du=−∫u5du
-
The integral of un is n+1un+1 when n=−1:
∫u5du=6u6
So, the result is: −6u6
Now substitute u back in:
−6cos6(x)
Method #2
-
Rewrite the integrand:
sin(x)cos5(x)=(1−sin2(x))2sin(x)cos(x)
-
Let u=1−sin2(x).
Then let du=−2sin(x)cos(x)dx and substitute −2du:
∫4u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
Now substitute u back in:
−6(1−sin2(x))3
-
Add the constant of integration:
−6cos6(x)+constant
The answer is:
−6cos6(x)+constant
The answer (Indefinite)
[src]
/
| 6
| 5 cos (x)
| cos (x)*sin(x) dx = C - -------
| 6
/
−6cos6x
The graph
6
1 cos (1)
- - -------
6 6
61−6cos61
=
6
1 cos (1)
- - -------
6 6
−6cos6(1)+61
Use the examples entering the upper and lower limits of integration.