Mister Exam

Other calculators


Cos^5xsinx

Integral of Cos^5xsinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     5             
 |  cos (x)*sin(x) dx
 |                   
/                    
0                    
01sin(x)cos5(x)dx\int\limits_{0}^{1} \sin{\left(x \right)} \cos^{5}{\left(x \right)}\, dx
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=cos(x)u = \cos{\left(x \right)}.

      Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

      u5du\int u^{5}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (u5)du=u5du\int \left(- u^{5}\right)\, du = - \int u^{5}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u5du=u66\int u^{5}\, du = \frac{u^{6}}{6}

        So, the result is: u66- \frac{u^{6}}{6}

      Now substitute uu back in:

      cos6(x)6- \frac{\cos^{6}{\left(x \right)}}{6}

    Method #2

    1. Rewrite the integrand:

      sin(x)cos5(x)=(1sin2(x))2sin(x)cos(x)\sin{\left(x \right)} \cos^{5}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos{\left(x \right)}

    2. Let u=1sin2(x)u = 1 - \sin^{2}{\left(x \right)}.

      Then let du=2sin(x)cos(x)dxdu = - 2 \sin{\left(x \right)} \cos{\left(x \right)} dx and substitute du2- \frac{du}{2}:

      u24du\int \frac{u^{2}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        So, the result is: u36- \frac{u^{3}}{6}

      Now substitute uu back in:

      (1sin2(x))36- \frac{\left(1 - \sin^{2}{\left(x \right)}\right)^{3}}{6}

  2. Add the constant of integration:

    cos6(x)6+constant- \frac{\cos^{6}{\left(x \right)}}{6}+ \mathrm{constant}


The answer is:

cos6(x)6+constant- \frac{\cos^{6}{\left(x \right)}}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                            6   
 |    5                    cos (x)
 | cos (x)*sin(x) dx = C - -------
 |                            6   
/                                 
cos6x6-{{\cos ^6x}\over{6}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
       6   
1   cos (1)
- - -------
6      6   
16cos616{{1}\over{6}}-{{\cos ^61}\over{6}}
=
=
       6   
1   cos (1)
- - -------
6      6   
cos6(1)6+16- \frac{\cos^{6}{\left(1 \right)}}{6} + \frac{1}{6}
Numerical answer [src]
0.162520281180929
0.162520281180929
The graph
Integral of Cos^5xsinx dx

    Use the examples entering the upper and lower limits of integration.