Mister Exam

Integral of Cos^5xsin2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  p                    
  -                    
  2                    
  /                    
 |                     
 |     5               
 |  cos (x)*sin(2*x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{\frac{p}{2}} \sin{\left(2 x \right)} \cos^{5}{\left(x \right)}\, dx$$
Integral(cos(x)^5*sin(2*x), (x, 0, p/2))
The answer (Indefinite) [src]
  /                                   
 |                                7   
 |    5                      2*cos (x)
 | cos (x)*sin(2*x) dx = C - ---------
 |                               7    
/                                     
$$\int \sin{\left(2 x \right)} \cos^{5}{\left(x \right)}\, dx = C - \frac{2 \cos^{7}{\left(x \right)}}{7}$$

    Use the examples entering the upper and lower limits of integration.