Mister Exam

Integral of Cos(4x-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  cos(4*x - 2) dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \cos{\left(4 x - 2 \right)}\, dx$$
Integral(cos(4*x - 2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                       sin(4*x - 2)
 | cos(4*x - 2) dx = C + ------------
 |                            4      
/                                    
$$\int \cos{\left(4 x - 2 \right)}\, dx = C + \frac{\sin{\left(4 x - 2 \right)}}{4}$$
The graph
The answer [src]
sin(2)
------
  2   
$$\frac{\sin{\left(2 \right)}}{2}$$
=
=
sin(2)
------
  2   
$$\frac{\sin{\left(2 \right)}}{2}$$
sin(2)/2
Numerical answer [src]
0.454648713412841
0.454648713412841

    Use the examples entering the upper and lower limits of integration.