Mister Exam

Other calculators

Integral of cosxdx/3-sin^3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /cos(x)      3   \   
 |  |------ - sin (x)| dx
 |  \  3             /   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(- \sin^{3}{\left(x \right)} + \frac{\cos{\left(x \right)}}{3}\right)\, dx$$
Integral(cos(x)/3 - sin(x)^3, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. Integrate term-by-term:

            1. The integral of is when :

            1. The integral of a constant is the constant times the variable of integration:

            The result is:

          Now substitute back in:

        Method #2

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. The integral of sine is negative cosine:

          The result is:

        Method #3

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. The integral of sine is negative cosine:

          The result is:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                     
 |                                3                     
 | /cos(x)      3   \          cos (x)   sin(x)         
 | |------ - sin (x)| dx = C - ------- + ------ + cos(x)
 | \  3             /             3        3            
 |                                                      
/                                                       
$$\int \left(- \sin^{3}{\left(x \right)} + \frac{\cos{\left(x \right)}}{3}\right)\, dx = C + \frac{\sin{\left(x \right)}}{3} - \frac{\cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}$$
The graph
The answer [src]
         3                     
  2   cos (1)   sin(1)         
- - - ------- + ------ + cos(1)
  3      3        3            
$$- \frac{2}{3} - \frac{\cos^{3}{\left(1 \right)}}{3} + \frac{\sin{\left(1 \right)}}{3} + \cos{\left(1 \right)}$$
=
=
         3                     
  2   cos (1)   sin(1)         
- - - ------- + ------ + cos(1)
  3      3        3            
$$- \frac{2}{3} - \frac{\cos^{3}{\left(1 \right)}}{3} + \frac{\sin{\left(1 \right)}}{3} + \cos{\left(1 \right)}$$
-2/3 - cos(1)^3/3 + sin(1)/3 + cos(1)
Numerical answer [src]
0.101549765720441
0.101549765720441

    Use the examples entering the upper and lower limits of integration.