1 / | | / 2 2\ | cos\x + y / dx | / 0
Integral(cos(x^2 + y^2), (x, 0, 1))
FresnelCRule(a=1, b=0, c=y**2, context=cos(x**2 + y**2), symbol=x)
Add the constant of integration:
The answer is:
/ / ___\ / ___\ \ ___ ____ | / 2\ |x*\/ 2 | |x*\/ 2 | / 2\| / \/ 2 *\/ pi *|cos\y /*C|-------| - S|-------|*sin\y /| | | | ____| | ____| | | / 2 2\ \ \ \/ pi / \ \/ pi / / | cos\x + y / dx = C + ------------------------------------------------------ | 2 /
/ / ___ \ / ___ \ \ ___ ____ | / 2\ |\/ 2 | |\/ 2 | / 2\| \/ 2 *\/ pi *|cos\y /*C|------| - S|------|*sin\y /| | | ____| | ____| | \ \\/ pi / \\/ pi / / ---------------------------------------------------- 2
=
/ / ___ \ / ___ \ \ ___ ____ | / 2\ |\/ 2 | |\/ 2 | / 2\| \/ 2 *\/ pi *|cos\y /*C|------| - S|------|*sin\y /| | | ____| | ____| | \ \\/ pi / \\/ pi / / ---------------------------------------------------- 2
sqrt(2)*sqrt(pi)*(cos(y^2)*fresnelc(sqrt(2)/sqrt(pi)) - fresnels(sqrt(2)/sqrt(pi))*sin(y^2))/2
Use the examples entering the upper and lower limits of integration.