Mister Exam

Other calculators

Integral of cos(x)*exp(2x+7) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |          2*x + 7   
 |  cos(x)*e        dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} e^{2 x + 7} \cos{\left(x \right)}\, dx$$
Integral(cos(x)*exp(2*x + 7), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Use integration by parts, noting that the integrand eventually repeats itself.

        1. For the integrand :

          Let and let .

          Then .

        2. For the integrand :

          Let and let .

          Then .

        3. Notice that the integrand has repeated itself, so move it to one side:

          Therefore,

      So, the result is:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Use integration by parts, noting that the integrand eventually repeats itself.

        1. For the integrand :

          Let and let .

          Then .

        2. For the integrand :

          Let and let .

          Then .

        3. Notice that the integrand has repeated itself, so move it to one side:

          Therefore,

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                         
 |                          / 2*x                    2*x\   
 |         2*x + 7          |e   *sin(x)   2*cos(x)*e   |  7
 | cos(x)*e        dx = C + |----------- + -------------|*e 
 |                          \     5              5      /   
/                                                           
$$\int e^{2 x + 7} \cos{\left(x \right)}\, dx = C + \left(\frac{e^{2 x} \sin{\left(x \right)}}{5} + \frac{2 e^{2 x} \cos{\left(x \right)}}{5}\right) e^{7}$$
The graph
The answer [src]
     7    9                    9
  2*e    e *sin(1)   2*cos(1)*e 
- ---- + --------- + -----------
   5         5            5     
$$- \frac{2 e^{7}}{5} + \frac{e^{9} \sin{\left(1 \right)}}{5} + \frac{2 e^{9} \cos{\left(1 \right)}}{5}$$
=
=
     7    9                    9
  2*e    e *sin(1)   2*cos(1)*e 
- ---- + --------- + -----------
   5         5            5     
$$- \frac{2 e^{7}}{5} + \frac{e^{9} \sin{\left(1 \right)}}{5} + \frac{2 e^{9} \cos{\left(1 \right)}}{5}$$
-2*exp(7)/5 + exp(9)*sin(1)/5 + 2*cos(1)*exp(9)/5
Numerical answer [src]
2676.29471141701
2676.29471141701

    Use the examples entering the upper and lower limits of integration.