Integral of cos(x)*exp(2x+7) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
e2x+7cos(x)=e7e2xcos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫e7e2xcos(x)dx=e7∫e2xcos(x)dx
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand e2xcos(x):
Let u(x)=cos(x) and let dv(x)=e2x.
Then ∫e2xcos(x)dx=2e2xcos(x)−∫(−2e2xsin(x))dx.
-
For the integrand −2e2xsin(x):
Let u(x)=−2sin(x) and let dv(x)=e2x.
Then ∫e2xcos(x)dx=4e2xsin(x)+2e2xcos(x)+∫(−4e2xcos(x))dx.
-
Notice that the integrand has repeated itself, so move it to one side:
45∫e2xcos(x)dx=4e2xsin(x)+2e2xcos(x)
Therefore,
∫e2xcos(x)dx=5e2xsin(x)+52e2xcos(x)
So, the result is: (5e2xsin(x)+52e2xcos(x))e7
Method #2
-
Rewrite the integrand:
e2x+7cos(x)=e7e2xcos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫e7e2xcos(x)dx=e7∫e2xcos(x)dx
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand e2xcos(x):
Let u(x)=cos(x) and let dv(x)=e2x.
Then ∫e2xcos(x)dx=2e2xcos(x)−∫(−2e2xsin(x))dx.
-
For the integrand −2e2xsin(x):
Let u(x)=−2sin(x) and let dv(x)=e2x.
Then ∫e2xcos(x)dx=4e2xsin(x)+2e2xcos(x)+∫(−4e2xcos(x))dx.
-
Notice that the integrand has repeated itself, so move it to one side:
45∫e2xcos(x)dx=4e2xsin(x)+2e2xcos(x)
Therefore,
∫e2xcos(x)dx=5e2xsin(x)+52e2xcos(x)
So, the result is: (5e2xsin(x)+52e2xcos(x))e7
-
Now simplify:
5(sin(x)+2cos(x))e2x+7
-
Add the constant of integration:
5(sin(x)+2cos(x))e2x+7+constant
The answer is:
5(sin(x)+2cos(x))e2x+7+constant
The answer (Indefinite)
[src]
/
| / 2*x 2*x\
| 2*x + 7 |e *sin(x) 2*cos(x)*e | 7
| cos(x)*e dx = C + |----------- + -------------|*e
| \ 5 5 /
/
∫e2x+7cos(x)dx=C+(5e2xsin(x)+52e2xcos(x))e7
The graph
7 9 9
2*e e *sin(1) 2*cos(1)*e
- ---- + --------- + -----------
5 5 5
−52e7+5e9sin(1)+52e9cos(1)
=
7 9 9
2*e e *sin(1) 2*cos(1)*e
- ---- + --------- + -----------
5 5 5
−52e7+5e9sin(1)+52e9cos(1)
-2*exp(7)/5 + exp(9)*sin(1)/5 + 2*cos(1)*exp(9)/5
Use the examples entering the upper and lower limits of integration.