Mister Exam

Other calculators

Integral of cosx*e^x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |          / 2\   
 |          \x /   
 |  cos(x)*E     dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} e^{x^{2}} \cos{\left(x \right)}\, dx$$
Integral(cos(x)*E^(x^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                        /               
 |                        |                
 |         / 2\           |         / 2\   
 |         \x /           |         \x /   
 | cos(x)*E     dx = C +  | cos(x)*e     dx
 |                        |                
/                        /                 
$$\int e^{x^{2}} \cos{\left(x \right)}\, dx = C + \int e^{x^{2}} \cos{\left(x \right)}\, dx$$
The answer [src]
  1                
  /                
 |                 
 |          / 2\   
 |          \x /   
 |  cos(x)*e     dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} e^{x^{2}} \cos{\left(x \right)}\, dx$$
=
=
  1                
  /                
 |                 
 |          / 2\   
 |          \x /   
 |  cos(x)*e     dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} e^{x^{2}} \cos{\left(x \right)}\, dx$$
Integral(cos(x)*exp(x^2), (x, 0, 1))
Numerical answer [src]
1.16570458514255
1.16570458514255

    Use the examples entering the upper and lower limits of integration.