Integral of cos(x)*cos(x)/sin(x) dx
The solution
The answer (Indefinite)
[src]
/
|
| cos(x)*cos(x) log(-1 + cos(x)) log(1 + cos(x))
| ------------- dx = C + ---------------- - --------------- + cos(x)
| sin(x) 2 2
|
/
∫sin(x)cos(x)cos(x)dx=C+2log(cos(x)−1)−2log(cos(x)+1)+cos(x)
The graph
∞+2iπ
=
∞+2iπ
Use the examples entering the upper and lower limits of integration.