Mister Exam

Other calculators


cos(x)*cos(x)/sin(x)

Integral of cos(x)*cos(x)/sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  cos(x)*cos(x)   
 |  ------------- dx
 |      sin(x)      
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx$$
Integral((cos(x)*cos(x))/sin(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                  
 |                                                                   
 | cos(x)*cos(x)          log(-1 + cos(x))   log(1 + cos(x))         
 | ------------- dx = C + ---------------- - --------------- + cos(x)
 |     sin(x)                    2                  2                
 |                                                                   
/                                                                    
$$\int \frac{\cos{\left(x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx = C + \frac{\log{\left(\cos{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\cos{\left(x \right)} + 1 \right)}}{2} + \cos{\left(x \right)}$$
The graph
The answer [src]
     pi*I
oo + ----
      2  
$$\infty + \frac{i \pi}{2}$$
=
=
     pi*I
oo + ----
      2  
$$\infty + \frac{i \pi}{2}$$
oo + pi*i/2
Numerical answer [src]
43.7193131744794
43.7193131744794
The graph
Integral of cos(x)*cos(x)/sin(x) dx

    Use the examples entering the upper and lower limits of integration.