0 / | | / ___ \ | \cos(x) - \/ 3 *sin(x)/ dx | / -pi ---- 34
Integral(cos(x) - sqrt(3)*sin(x), (x, -pi/34, 0))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
The integral of cosine is sine:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | / ___ \ ___ | \cos(x) - \/ 3 *sin(x)/ dx = C + \/ 3 *cos(x) + sin(x) | /
___ ___ /pi\ /pi\
\/ 3 - \/ 3 *cos|--| + sin|--|
\34/ \34/
=
___ ___ /pi\ /pi\
\/ 3 - \/ 3 *cos|--| + sin|--|
\34/ \34/
sqrt(3) - sqrt(3)*cos(pi/34) + sin(pi/34)
Use the examples entering the upper and lower limits of integration.