Mister Exam

Other calculators

Integral of cos(x)-1/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  pi                  
  --                  
  3                   
   /                  
  |                   
  |  (cos(x) - 1/2) dx
  |                   
 /                    
-pi                   
----                  
 3                    
π3π3(cos(x)12)dx\int\limits_{- \frac{\pi}{3}}^{\frac{\pi}{3}} \left(\cos{\left(x \right)} - \frac{1}{2}\right)\, dx
Integral(cos(x) - 1/2, (x, -pi/3, pi/3))
Detail solution
  1. Integrate term-by-term:

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    1. The integral of a constant is the constant times the variable of integration:

      (12)dx=x2\int \left(- \frac{1}{2}\right)\, dx = - \frac{x}{2}

    The result is: x2+sin(x)- \frac{x}{2} + \sin{\left(x \right)}

  2. Add the constant of integration:

    x2+sin(x)+constant- \frac{x}{2} + \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

x2+sin(x)+constant- \frac{x}{2} + \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                         x         
 | (cos(x) - 1/2) dx = C - - + sin(x)
 |                         2         
/                                    
(cos(x)12)dx=Cx2+sin(x)\int \left(\cos{\left(x \right)} - \frac{1}{2}\right)\, dx = C - \frac{x}{2} + \sin{\left(x \right)}
The graph
-1.0-0.8-0.6-0.4-0.20.00.20.40.60.81.01.0-1.0
The answer [src]
  ___   pi
\/ 3  - --
        3 
π3+3- \frac{\pi}{3} + \sqrt{3}
=
=
  ___   pi
\/ 3  - --
        3 
π3+3- \frac{\pi}{3} + \sqrt{3}
sqrt(3) - pi/3
Numerical answer [src]
0.68485325637228
0.68485325637228

    Use the examples entering the upper and lower limits of integration.