Mister Exam

Other calculators

Integral of cosx/(x+sqrtx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo             
  /             
 |              
 |    cos(x)    
 |  --------- dx
 |        ___   
 |  x + \/ x    
 |              
/               
2               
$$\int\limits_{2}^{\infty} \frac{\cos{\left(x \right)}}{\sqrt{x} + x}\, dx$$
Integral(cos(x)/(x + sqrt(x)), (x, 2, oo))
The answer (Indefinite) [src]
  /                     /            
 |                     |             
 |   cos(x)            |   cos(x)    
 | --------- dx = C +  | --------- dx
 |       ___           |       ___   
 | x + \/ x            | x + \/ x    
 |                     |             
/                     /              
$$\int \frac{\cos{\left(x \right)}}{\sqrt{x} + x}\, dx = C + \int \frac{\cos{\left(x \right)}}{\sqrt{x} + x}\, dx$$
The answer [src]
 oo             
  /             
 |              
 |    cos(x)    
 |  --------- dx
 |        ___   
 |  x + \/ x    
 |              
/               
2               
$$\int\limits_{2}^{\infty} \frac{\cos{\left(x \right)}}{\sqrt{x} + x}\, dx$$
=
=
 oo             
  /             
 |              
 |    cos(x)    
 |  --------- dx
 |        ___   
 |  x + \/ x    
 |              
/               
2               
$$\int\limits_{2}^{\infty} \frac{\cos{\left(x \right)}}{\sqrt{x} + x}\, dx$$
Integral(cos(x)/(x + sqrt(x)), (x, 2, oo))

    Use the examples entering the upper and lower limits of integration.