Integral of cos(x/2)/2 dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(2x)dx=2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: sin(2x)
-
Now simplify:
sin(2x)
-
Add the constant of integration:
sin(2x)+constant
The answer is:
sin(2x)+constant
The answer (Indefinite)
[src]
/
|
| /x\
| cos|-|
| \2/ /x\
| ------ dx = C + sin|-|
| 2 \2/
|
/
∫2cos(2x)dx=C+sin(2x)
The graph
sin(21)
=
sin(21)
Use the examples entering the upper and lower limits of integration.