Mister Exam

Other calculators


cos(x/2)/2

Integral of cos(x/2)/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     /x\   
 |  cos|-|   
 |     \2/   
 |  ------ dx
 |    2      
 |           
/            
0            
01cos(x2)2dx\int\limits_{0}^{1} \frac{\cos{\left(\frac{x}{2} \right)}}{2}\, dx
Integral(cos(x/2)/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    cos(x2)2dx=cos(x2)dx2\int \frac{\cos{\left(\frac{x}{2} \right)}}{2}\, dx = \frac{\int \cos{\left(\frac{x}{2} \right)}\, dx}{2}

    1. Let u=x2u = \frac{x}{2}.

      Then let du=dx2du = \frac{dx}{2} and substitute 2du2 du:

      4cos(u)du\int 4 \cos{\left(u \right)}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        2cos(u)du=2cos(u)du\int 2 \cos{\left(u \right)}\, du = 2 \int \cos{\left(u \right)}\, du

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: 2sin(u)2 \sin{\left(u \right)}

      Now substitute uu back in:

      2sin(x2)2 \sin{\left(\frac{x}{2} \right)}

    So, the result is: sin(x2)\sin{\left(\frac{x}{2} \right)}

  2. Now simplify:

    sin(x2)\sin{\left(\frac{x}{2} \right)}

  3. Add the constant of integration:

    sin(x2)+constant\sin{\left(\frac{x}{2} \right)}+ \mathrm{constant}


The answer is:

sin(x2)+constant\sin{\left(\frac{x}{2} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 |    /x\                
 | cos|-|                
 |    \2/             /x\
 | ------ dx = C + sin|-|
 |   2                \2/
 |                       
/                        
cos(x2)2dx=C+sin(x2)\int \frac{\cos{\left(\frac{x}{2} \right)}}{2}\, dx = C + \sin{\left(\frac{x}{2} \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
sin(1/2)
sin(12)\sin{\left(\frac{1}{2} \right)}
=
=
sin(1/2)
sin(12)\sin{\left(\frac{1}{2} \right)}
Numerical answer [src]
0.479425538604203
0.479425538604203
The graph
Integral of cos(x/2)/2 dx

    Use the examples entering the upper and lower limits of integration.