Mister Exam

Other calculators

Integral of cosx/(1+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  cos(x)   
 |  ------ dx
 |       2   
 |  1 + x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{x^{2} + 1}\, dx$$
Integral(cos(x)/(1 + x^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                  /         
 |                  |          
 | cos(x)           | cos(x)   
 | ------ dx = C +  | ------ dx
 |      2           |      2   
 | 1 + x            | 1 + x    
 |                  |          
/                  /           
$$\int {{{\cos x}\over{x^2+1}}}{\;dx}$$
The answer [src]
  1          
  /          
 |           
 |  cos(x)   
 |  ------ dx
 |       2   
 |  1 + x    
 |           
/            
0            
$$\int_{0}^{1}{{{\cos x}\over{x^2+1}}\;dx}$$
=
=
  1          
  /          
 |           
 |  cos(x)   
 |  ------ dx
 |       2   
 |  1 + x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{x^{2} + 1}\, dx$$
Numerical answer [src]
0.682933031807033
0.682933031807033

    Use the examples entering the upper and lower limits of integration.