Mister Exam

Other calculators

Integral of cos(x)/(1+(sin(x))^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0               
  /               
 |                
 |     cos(x)     
 |  ----------- dx
 |         2      
 |  1 + sin (x)   
 |                
/                 
0                 
$$\int\limits_{0}^{0} \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}\, dx$$
Integral(cos(x)/(1 + sin(x)^2), (x, 0, 0))
The answer (Indefinite) [src]
  /                                 
 |                                  
 |    cos(x)                        
 | ----------- dx = C + atan(sin(x))
 |        2                         
 | 1 + sin (x)                      
 |                                  
/                                   
$$\int \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}\, dx = C + \operatorname{atan}{\left(\sin{\left(x \right)} \right)}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.