Mister Exam

Other calculators

Integral of cos(x)/e^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0          
  /          
 |           
 |  cos(x)   
 |  ------ dx
 |     x     
 |    E      
 |           
/            
0            
$$\int\limits_{0}^{0} \frac{\cos{\left(x \right)}}{e^{x}}\, dx$$
Integral(cos(x)/E^x, (x, 0, 0))
The answer (Indefinite) [src]
  /                                       
 |                  -x                  -x
 | cos(x)          e  *sin(x)   cos(x)*e  
 | ------ dx = C + ---------- - ----------
 |    x                2            2     
 |   E                                    
 |                                        
/                                         
$$\int \frac{\cos{\left(x \right)}}{e^{x}}\, dx = C + \frac{e^{- x} \sin{\left(x \right)}}{2} - \frac{e^{- x} \cos{\left(x \right)}}{2}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.