Mister Exam

Other calculators


cos2x/(1+sin2x)^2

Integral of cos2x/(1+sin2x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |      cos(2*x)      
 |  --------------- dx
 |                2   
 |  (1 + sin(2*x))    
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{\cos{\left(2 x \right)}}{\left(\sin{\left(2 x \right)} + 1\right)^{2}}\, dx$$
The answer (Indefinite) [src]
  /                                       
 |                                        
 |     cos(2*x)                   1       
 | --------------- dx = C - --------------
 |               2          2 + 2*sin(2*x)
 | (1 + sin(2*x))                         
 |                                        
/                                         
$$-{{1}\over{2\,\left(\sin \left(2\,x\right)+1\right)}}$$
The graph
The answer [src]
1        1      
- - ------------
2   2 + 2*sin(2)
$${{1-{{1}\over{\sin 2+1}}}\over{2}}$$
=
=
1        1      
- - ------------
2   2 + 2*sin(2)
$$- \frac{1}{2 \sin{\left(2 \right)} + 2} + \frac{1}{2}$$
Numerical answer [src]
0.238123566828831
0.238123566828831
The graph
Integral of cos2x/(1+sin2x)^2 dx

    Use the examples entering the upper and lower limits of integration.