Mister Exam

Integral of (cos2x*sinx)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  cos(2*x)*sin(x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin{\left(x \right)} \cos{\left(2 x \right)}\, dx$$
Integral(cos(2*x)*sin(x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              3            
 |                          2*cos (x)         
 | cos(2*x)*sin(x) dx = C - --------- + cos(x)
 |                              3             
/                                             
$$\int \sin{\left(x \right)} \cos{\left(2 x \right)}\, dx = C - \frac{2 \cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}$$
The graph
The answer [src]
  1   cos(1)*cos(2)   2*sin(1)*sin(2)
- - + ------------- + ---------------
  3         3                3       
$$- \frac{1}{3} + \frac{\cos{\left(1 \right)} \cos{\left(2 \right)}}{3} + \frac{2 \sin{\left(1 \right)} \sin{\left(2 \right)}}{3}$$
=
=
  1   cos(1)*cos(2)   2*sin(1)*sin(2)
- - + ------------- + ---------------
  3         3                3       
$$- \frac{1}{3} + \frac{\cos{\left(1 \right)} \cos{\left(2 \right)}}{3} + \frac{2 \sin{\left(1 \right)} \sin{\left(2 \right)}}{3}$$
-1/3 + cos(1)*cos(2)/3 + 2*sin(1)*sin(2)/3
Numerical answer [src]
0.101816569034144
0.101816569034144

    Use the examples entering the upper and lower limits of integration.