Mister Exam

Other calculators


cos^2(3x)sin^4(3x)
  • How to use it?

  • Integral of d{x}:
  • Integral of 1 Integral of 1
  • Integral of e^(x^3) Integral of e^(x^3)
  • Integral of atanx Integral of atanx
  • Integral of 1/(xlnx^2) Integral of 1/(xlnx^2)
  • Identical expressions

  • cos^ two (3x)sin^ four (3x)
  • co sinus of e of squared (3x) sinus of to the power of 4(3x)
  • co sinus of e of to the power of two (3x) sinus of to the power of four (3x)
  • cos2(3x)sin4(3x)
  • cos23xsin43x
  • cos²(3x)sin⁴(3x)
  • cos to the power of 2(3x)sin to the power of 4(3x)
  • cos^23xsin^43x
  • cos^2(3x)sin^4(3x)dx

Integral of cos^2(3x)sin^4(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                       
  /                       
 |                        
 |     2         4        
 |  cos (3*x)*sin (3*x) dx
 |                        
/                         
0                         
00sin4(3x)cos2(3x)dx\int\limits_{0}^{0} \sin^{4}{\left(3 x \right)} \cos^{2}{\left(3 x \right)}\, dx
Integral(cos(3*x)^2*sin(3*x)^4, (x, 0, 0))
Detail solution
  1. Rewrite the integrand:

    sin4(3x)cos2(3x)=(12cos(6x)2)2(cos(6x)2+12)\sin^{4}{\left(3 x \right)} \cos^{2}{\left(3 x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(6 x \right)}}{2}\right)^{2} \left(\frac{\cos{\left(6 x \right)}}{2} + \frac{1}{2}\right)

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=6xu = 6 x.

      Then let du=6dxdu = 6 dx and substitute dudu:

      (cos3(u)48cos2(u)48cos(u)48+148)du\int \left(\frac{\cos^{3}{\left(u \right)}}{48} - \frac{\cos^{2}{\left(u \right)}}{48} - \frac{\cos{\left(u \right)}}{48} + \frac{1}{48}\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos3(u)48du=cos3(u)du48\int \frac{\cos^{3}{\left(u \right)}}{48}\, du = \frac{\int \cos^{3}{\left(u \right)}\, du}{48}

          1. Rewrite the integrand:

            cos3(u)=(1sin2(u))cos(u)\cos^{3}{\left(u \right)} = \left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)}

          2. Let u=sin(u)u = \sin{\left(u \right)}.

            Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

            (1u2)du\int \left(1 - u^{2}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                1du=u\int 1\, du = u

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u33- \frac{u^{3}}{3}

              The result is: u33+u- \frac{u^{3}}{3} + u

            Now substitute uu back in:

            sin3(u)3+sin(u)- \frac{\sin^{3}{\left(u \right)}}{3} + \sin{\left(u \right)}

          So, the result is: sin3(u)144+sin(u)48- \frac{\sin^{3}{\left(u \right)}}{144} + \frac{\sin{\left(u \right)}}{48}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos2(u)48)du=cos2(u)du48\int \left(- \frac{\cos^{2}{\left(u \right)}}{48}\right)\, du = - \frac{\int \cos^{2}{\left(u \right)}\, du}{48}

          1. Rewrite the integrand:

            cos2(u)=cos(2u)2+12\cos^{2}{\left(u \right)} = \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

              1. Let u=2uu = 2 u.

                Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                Now substitute uu back in:

                sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

              So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

            1. The integral of a constant is the constant times the variable of integration:

              12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

            The result is: u2+sin(2u)4\frac{u}{2} + \frac{\sin{\left(2 u \right)}}{4}

          So, the result is: u96sin(2u)192- \frac{u}{96} - \frac{\sin{\left(2 u \right)}}{192}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos(u)48)du=cos(u)du48\int \left(- \frac{\cos{\left(u \right)}}{48}\right)\, du = - \frac{\int \cos{\left(u \right)}\, du}{48}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)48- \frac{\sin{\left(u \right)}}{48}

        1. The integral of a constant is the constant times the variable of integration:

          148du=u48\int \frac{1}{48}\, du = \frac{u}{48}

        The result is: u96sin(2u)192sin3(u)144\frac{u}{96} - \frac{\sin{\left(2 u \right)}}{192} - \frac{\sin^{3}{\left(u \right)}}{144}

      Now substitute uu back in:

      x16sin3(6x)144sin(12x)192\frac{x}{16} - \frac{\sin^{3}{\left(6 x \right)}}{144} - \frac{\sin{\left(12 x \right)}}{192}

    Method #2

    1. Rewrite the integrand:

      (12cos(6x)2)2(cos(6x)2+12)=cos3(6x)8cos2(6x)8cos(6x)8+18\left(\frac{1}{2} - \frac{\cos{\left(6 x \right)}}{2}\right)^{2} \left(\frac{\cos{\left(6 x \right)}}{2} + \frac{1}{2}\right) = \frac{\cos^{3}{\left(6 x \right)}}{8} - \frac{\cos^{2}{\left(6 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{8} + \frac{1}{8}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos3(6x)8dx=cos3(6x)dx8\int \frac{\cos^{3}{\left(6 x \right)}}{8}\, dx = \frac{\int \cos^{3}{\left(6 x \right)}\, dx}{8}

        1. Rewrite the integrand:

          cos3(6x)=(1sin2(6x))cos(6x)\cos^{3}{\left(6 x \right)} = \left(1 - \sin^{2}{\left(6 x \right)}\right) \cos{\left(6 x \right)}

        2. Let u=sin(6x)u = \sin{\left(6 x \right)}.

          Then let du=6cos(6x)dxdu = 6 \cos{\left(6 x \right)} dx and substitute dudu:

          (16u26)du\int \left(\frac{1}{6} - \frac{u^{2}}{6}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

              16du=u6\int \frac{1}{6}\, du = \frac{u}{6}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u26)du=u2du6\int \left(- \frac{u^{2}}{6}\right)\, du = - \frac{\int u^{2}\, du}{6}

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u318- \frac{u^{3}}{18}

            The result is: u318+u6- \frac{u^{3}}{18} + \frac{u}{6}

          Now substitute uu back in:

          sin3(6x)18+sin(6x)6- \frac{\sin^{3}{\left(6 x \right)}}{18} + \frac{\sin{\left(6 x \right)}}{6}

        So, the result is: sin3(6x)144+sin(6x)48- \frac{\sin^{3}{\left(6 x \right)}}{144} + \frac{\sin{\left(6 x \right)}}{48}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos2(6x)8)dx=cos2(6x)dx8\int \left(- \frac{\cos^{2}{\left(6 x \right)}}{8}\right)\, dx = - \frac{\int \cos^{2}{\left(6 x \right)}\, dx}{8}

        1. Rewrite the integrand:

          cos2(6x)=cos(12x)2+12\cos^{2}{\left(6 x \right)} = \frac{\cos{\left(12 x \right)}}{2} + \frac{1}{2}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(12x)2dx=cos(12x)dx2\int \frac{\cos{\left(12 x \right)}}{2}\, dx = \frac{\int \cos{\left(12 x \right)}\, dx}{2}

            1. Let u=12xu = 12 x.

              Then let du=12dxdu = 12 dx and substitute du12\frac{du}{12}:

              cos(u)12du\int \frac{\cos{\left(u \right)}}{12}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)du=cos(u)du12\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{12}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)12\frac{\sin{\left(u \right)}}{12}

              Now substitute uu back in:

              sin(12x)12\frac{\sin{\left(12 x \right)}}{12}

            So, the result is: sin(12x)24\frac{\sin{\left(12 x \right)}}{24}

          1. The integral of a constant is the constant times the variable of integration:

            12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

          The result is: x2+sin(12x)24\frac{x}{2} + \frac{\sin{\left(12 x \right)}}{24}

        So, the result is: x16sin(12x)192- \frac{x}{16} - \frac{\sin{\left(12 x \right)}}{192}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos(6x)8)dx=cos(6x)dx8\int \left(- \frac{\cos{\left(6 x \right)}}{8}\right)\, dx = - \frac{\int \cos{\left(6 x \right)}\, dx}{8}

        1. Let u=6xu = 6 x.

          Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

          cos(u)6du\int \frac{\cos{\left(u \right)}}{6}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=cos(u)du6\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

          Now substitute uu back in:

          sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

        So, the result is: sin(6x)48- \frac{\sin{\left(6 x \right)}}{48}

      1. The integral of a constant is the constant times the variable of integration:

        18dx=x8\int \frac{1}{8}\, dx = \frac{x}{8}

      The result is: x16sin3(6x)144sin(12x)192\frac{x}{16} - \frac{\sin^{3}{\left(6 x \right)}}{144} - \frac{\sin{\left(12 x \right)}}{192}

    Method #3

    1. Rewrite the integrand:

      (12cos(6x)2)2(cos(6x)2+12)=cos3(6x)8cos2(6x)8cos(6x)8+18\left(\frac{1}{2} - \frac{\cos{\left(6 x \right)}}{2}\right)^{2} \left(\frac{\cos{\left(6 x \right)}}{2} + \frac{1}{2}\right) = \frac{\cos^{3}{\left(6 x \right)}}{8} - \frac{\cos^{2}{\left(6 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{8} + \frac{1}{8}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos3(6x)8dx=cos3(6x)dx8\int \frac{\cos^{3}{\left(6 x \right)}}{8}\, dx = \frac{\int \cos^{3}{\left(6 x \right)}\, dx}{8}

        1. Rewrite the integrand:

          cos3(6x)=(1sin2(6x))cos(6x)\cos^{3}{\left(6 x \right)} = \left(1 - \sin^{2}{\left(6 x \right)}\right) \cos{\left(6 x \right)}

        2. Let u=sin(6x)u = \sin{\left(6 x \right)}.

          Then let du=6cos(6x)dxdu = 6 \cos{\left(6 x \right)} dx and substitute dudu:

          (16u26)du\int \left(\frac{1}{6} - \frac{u^{2}}{6}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

              16du=u6\int \frac{1}{6}\, du = \frac{u}{6}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u26)du=u2du6\int \left(- \frac{u^{2}}{6}\right)\, du = - \frac{\int u^{2}\, du}{6}

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u318- \frac{u^{3}}{18}

            The result is: u318+u6- \frac{u^{3}}{18} + \frac{u}{6}

          Now substitute uu back in:

          sin3(6x)18+sin(6x)6- \frac{\sin^{3}{\left(6 x \right)}}{18} + \frac{\sin{\left(6 x \right)}}{6}

        So, the result is: sin3(6x)144+sin(6x)48- \frac{\sin^{3}{\left(6 x \right)}}{144} + \frac{\sin{\left(6 x \right)}}{48}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos2(6x)8)dx=cos2(6x)dx8\int \left(- \frac{\cos^{2}{\left(6 x \right)}}{8}\right)\, dx = - \frac{\int \cos^{2}{\left(6 x \right)}\, dx}{8}

        1. Rewrite the integrand:

          cos2(6x)=cos(12x)2+12\cos^{2}{\left(6 x \right)} = \frac{\cos{\left(12 x \right)}}{2} + \frac{1}{2}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(12x)2dx=cos(12x)dx2\int \frac{\cos{\left(12 x \right)}}{2}\, dx = \frac{\int \cos{\left(12 x \right)}\, dx}{2}

            1. Let u=12xu = 12 x.

              Then let du=12dxdu = 12 dx and substitute du12\frac{du}{12}:

              cos(u)12du\int \frac{\cos{\left(u \right)}}{12}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)du=cos(u)du12\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{12}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)12\frac{\sin{\left(u \right)}}{12}

              Now substitute uu back in:

              sin(12x)12\frac{\sin{\left(12 x \right)}}{12}

            So, the result is: sin(12x)24\frac{\sin{\left(12 x \right)}}{24}

          1. The integral of a constant is the constant times the variable of integration:

            12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

          The result is: x2+sin(12x)24\frac{x}{2} + \frac{\sin{\left(12 x \right)}}{24}

        So, the result is: x16sin(12x)192- \frac{x}{16} - \frac{\sin{\left(12 x \right)}}{192}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos(6x)8)dx=cos(6x)dx8\int \left(- \frac{\cos{\left(6 x \right)}}{8}\right)\, dx = - \frac{\int \cos{\left(6 x \right)}\, dx}{8}

        1. Let u=6xu = 6 x.

          Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

          cos(u)6du\int \frac{\cos{\left(u \right)}}{6}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=cos(u)du6\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

          Now substitute uu back in:

          sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

        So, the result is: sin(6x)48- \frac{\sin{\left(6 x \right)}}{48}

      1. The integral of a constant is the constant times the variable of integration:

        18dx=x8\int \frac{1}{8}\, dx = \frac{x}{8}

      The result is: x16sin3(6x)144sin(12x)192\frac{x}{16} - \frac{\sin^{3}{\left(6 x \right)}}{144} - \frac{\sin{\left(12 x \right)}}{192}

  3. Add the constant of integration:

    x16sin3(6x)144sin(12x)192+constant\frac{x}{16} - \frac{\sin^{3}{\left(6 x \right)}}{144} - \frac{\sin{\left(12 x \right)}}{192}+ \mathrm{constant}


The answer is:

x16sin3(6x)144sin(12x)192+constant\frac{x}{16} - \frac{\sin^{3}{\left(6 x \right)}}{144} - \frac{\sin{\left(12 x \right)}}{192}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                       
 |                                 3                      
 |    2         4               sin (6*x)   sin(12*x)   x 
 | cos (3*x)*sin (3*x) dx = C - --------- - --------- + --
 |                                 144         192      16
/                                                         
sin4(3x)cos2(3x)dx=C+x16sin3(6x)144sin(12x)192\int \sin^{4}{\left(3 x \right)} \cos^{2}{\left(3 x \right)}\, dx = C + \frac{x}{16} - \frac{\sin^{3}{\left(6 x \right)}}{144} - \frac{\sin{\left(12 x \right)}}{192}
The graph
0.001.000.100.200.300.400.500.600.700.800.9001
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0
The graph
Integral of cos^2(3x)sin^4(3x) dx

    Use the examples entering the upper and lower limits of integration.