Mister Exam

Other calculators


cos^3(2x)

Integral of cos^3(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     3        
 |  cos (2*x) dx
 |              
/               
0               
01cos3(2x)dx\int\limits_{0}^{1} \cos^{3}{\left(2 x \right)}\, dx
Integral(cos(2*x)^3, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

      Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

      (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u36- \frac{u^{3}}{6}

        The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

      Now substitute uu back in:

      sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

    Method #2

    1. Rewrite the integrand:

      (1sin2(2x))cos(2x)=sin2(2x)cos(2x)+cos(2x)\left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)} = - \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)} + \cos{\left(2 x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin2(2x)cos(2x))dx=sin2(2x)cos(2x)dx\int \left(- \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\right)\, dx = - \int \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\, dx

        1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

          Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute du2\frac{du}{2}:

          u22du\int \frac{u^{2}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=u2du2\int u^{2}\, du = \frac{\int u^{2}\, du}{2}

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u36\frac{u^{3}}{6}

          Now substitute uu back in:

          sin3(2x)6\frac{\sin^{3}{\left(2 x \right)}}{6}

        So, the result is: sin3(2x)6- \frac{\sin^{3}{\left(2 x \right)}}{6}

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

        Now substitute uu back in:

        sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

      The result is: sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

    Method #3

    1. Rewrite the integrand:

      (1sin2(2x))cos(2x)=sin2(2x)cos(2x)+cos(2x)\left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)} = - \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)} + \cos{\left(2 x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin2(2x)cos(2x))dx=sin2(2x)cos(2x)dx\int \left(- \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\right)\, dx = - \int \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\, dx

        1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

          Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute du2\frac{du}{2}:

          u22du\int \frac{u^{2}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=u2du2\int u^{2}\, du = \frac{\int u^{2}\, du}{2}

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u36\frac{u^{3}}{6}

          Now substitute uu back in:

          sin3(2x)6\frac{\sin^{3}{\left(2 x \right)}}{6}

        So, the result is: sin3(2x)6- \frac{\sin^{3}{\left(2 x \right)}}{6}

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

        Now substitute uu back in:

        sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

      The result is: sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

  3. Now simplify:

    (3sin2(2x))sin(2x)6\frac{\left(3 - \sin^{2}{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{6}

  4. Add the constant of integration:

    (3sin2(2x))sin(2x)6+constant\frac{\left(3 - \sin^{2}{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{6}+ \mathrm{constant}


The answer is:

(3sin2(2x))sin(2x)6+constant\frac{\left(3 - \sin^{2}{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                  3     
 |    3               sin(2*x)   sin (2*x)
 | cos (2*x) dx = C + -------- - ---------
 |                       2           6    
/                                         
cos3(2x)dx=Csin3(2x)6+sin(2x)2\int \cos^{3}{\left(2 x \right)}\, dx = C - \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-1
The answer [src]
            3   
sin(2)   sin (2)
------ - -------
  2         6   
sin3(2)6+sin(2)2- \frac{\sin^{3}{\left(2 \right)}}{6} + \frac{\sin{\left(2 \right)}}{2}
=
=
            3   
sin(2)   sin (2)
------ - -------
  2         6   
sin3(2)6+sin(2)2- \frac{\sin^{3}{\left(2 \right)}}{6} + \frac{\sin{\left(2 \right)}}{2}
sin(2)/2 - sin(2)^3/6
Numerical answer [src]
0.329344222634675
0.329344222634675
The graph
Integral of cos^3(2x) dx

    Use the examples entering the upper and lower limits of integration.