Integral of cos^3(2x) dx
The solution
Detail solution
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
Method #2
-
Rewrite the integrand:
(1−sin2(2x))cos(2x)=−sin2(2x)cos(2x)+cos(2x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(2x)cos(2x))dx=−∫sin2(2x)cos(2x)dx
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫2u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
Now substitute u back in:
6sin3(2x)
So, the result is: −6sin3(2x)
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
The result is: −6sin3(2x)+2sin(2x)
Method #3
-
Rewrite the integrand:
(1−sin2(2x))cos(2x)=−sin2(2x)cos(2x)+cos(2x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(2x)cos(2x))dx=−∫sin2(2x)cos(2x)dx
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫2u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
Now substitute u back in:
6sin3(2x)
So, the result is: −6sin3(2x)
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
The result is: −6sin3(2x)+2sin(2x)
-
Now simplify:
6(3−sin2(2x))sin(2x)
-
Add the constant of integration:
6(3−sin2(2x))sin(2x)+constant
The answer is:
6(3−sin2(2x))sin(2x)+constant
The answer (Indefinite)
[src]
/
| 3
| 3 sin(2*x) sin (2*x)
| cos (2*x) dx = C + -------- - ---------
| 2 6
/
∫cos3(2x)dx=C−6sin3(2x)+2sin(2x)
The graph
3
sin(2) sin (2)
------ - -------
2 6
−6sin3(2)+2sin(2)
=
3
sin(2) sin (2)
------ - -------
2 6
−6sin3(2)+2sin(2)
Use the examples entering the upper and lower limits of integration.