Mister Exam

Other calculators

Integral of (cos^4)x*sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                    
 --                    
 2                     
  /                    
 |                     
 |     4               
 |  cos (x)*x*sin(x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{\frac{\pi}{2}} x \cos^{4}{\left(x \right)} \sin{\left(x \right)}\, dx$$
Integral((cos(x)^4*x)*sin(x), (x, 0, pi/2))
The answer (Indefinite) [src]
  /                                                                                    
 |                                5           5         4                  2       3   
 |    4                      8*sin (x)   x*cos (x)   cos (x)*sin(x)   4*cos (x)*sin (x)
 | cos (x)*x*sin(x) dx = C + --------- - --------- + -------------- + -----------------
 |                               75          5             5                  15       
/                                                                                      
$$\int x \cos^{4}{\left(x \right)} \sin{\left(x \right)}\, dx = C - \frac{x \cos^{5}{\left(x \right)}}{5} + \frac{8 \sin^{5}{\left(x \right)}}{75} + \frac{4 \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}}{15} + \frac{\sin{\left(x \right)} \cos^{4}{\left(x \right)}}{5}$$
The graph
The answer [src]
8/75
$$\frac{8}{75}$$
=
=
8/75
$$\frac{8}{75}$$
8/75
Numerical answer [src]
0.106666666666667
0.106666666666667

    Use the examples entering the upper and lower limits of integration.