Mister Exam

Other calculators

Integral of cos^5(2t)sin^2(2t)dt dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |     5         2        
 |  cos (2*t)*sin (2*t) dt
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \sin^{2}{\left(2 t \right)} \cos^{5}{\left(2 t \right)}\, dt$$
Integral(cos(2*t)^5*sin(2*t)^2, (t, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              
 |                                 5           3           7     
 |    5         2               sin (2*t)   sin (2*t)   sin (2*t)
 | cos (2*t)*sin (2*t) dt = C - --------- + --------- + ---------
 |                                  5           6           14   
/                                                                
$$\int \sin^{2}{\left(2 t \right)} \cos^{5}{\left(2 t \right)}\, dt = C + \frac{\sin^{7}{\left(2 t \right)}}{14} - \frac{\sin^{5}{\left(2 t \right)}}{5} + \frac{\sin^{3}{\left(2 t \right)}}{6}$$
The graph
The answer [src]
     5         3         7   
  sin (2)   sin (2)   sin (2)
- ------- + ------- + -------
     5         6         14  
$$- \frac{\sin^{5}{\left(2 \right)}}{5} + \frac{\sin^{7}{\left(2 \right)}}{14} + \frac{\sin^{3}{\left(2 \right)}}{6}$$
=
=
     5         3         7   
  sin (2)   sin (2)   sin (2)
- ------- + ------- + -------
     5         6         14  
$$- \frac{\sin^{5}{\left(2 \right)}}{5} + \frac{\sin^{7}{\left(2 \right)}}{14} + \frac{\sin^{3}{\left(2 \right)}}{6}$$
-sin(2)^5/5 + sin(2)^3/6 + sin(2)^7/14
Numerical answer [src]
0.0376915856526081
0.0376915856526081

    Use the examples entering the upper and lower limits of integration.