Mister Exam

Other calculators


xcosx/sin^2x

Integral of xcosx/sin^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  x*cos(x)   
 |  -------- dx
 |     2       
 |  sin (x)    
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx$$
Integral(x*cos(x)/(sin(x)^2), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of is when :

      Now substitute back in:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                             
 |                                                              
 | x*cos(x)          log(-1 + cos(x))   log(1 + cos(x))     x   
 | -------- dx = C + ---------------- - --------------- - ------
 |    2                     2                  2          sin(x)
 | sin (x)                                                      
 |                                                              
/                                                               
$$-{{\left(\sin ^2\left(2\,x\right)+\cos ^2\left(2\,x\right)-2\,\cos \left(2\,x\right)+1\right)\,\log \left(\sin ^2x+\cos ^2x+2\,\cos x+1 \right)+\left(-\sin ^2\left(2\,x\right)-\cos ^2\left(2\,x\right)+2\, \cos \left(2\,x\right)-1\right)\,\log \left(\sin ^2x+\cos ^2x-2\, \cos x+1\right)+4\,x\,\cos x\,\sin \left(2\,x\right)-4\,x\,\sin x\, \cos \left(2\,x\right)+4\,x\,\sin x}\over{2\,\sin ^2\left(2\,x \right)+2\,\cos ^2\left(2\,x\right)-4\,\cos \left(2\,x\right)+2}}$$
The graph
The answer [src]
oo
$${\it \%a}$$
=
=
oo
$$\infty$$
Numerical answer [src]
43.9906157628331
43.9906157628331
The graph
Integral of xcosx/sin^2x dx

    Use the examples entering the upper and lower limits of integration.