Mister Exam

Other calculators


cos^4x/sin^5x

Integral of cos^4x/sin^5x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     4      
 |  cos (x)   
 |  ------- dx
 |     5      
 |  sin (x)   
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{\cos^{4}{\left(x \right)}}{\sin^{5}{\left(x \right)}}\, dx$$
Integral(cos(x)^4/(sin(x)^5), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                    
 |                                                                                     
 |    4                                                               3                
 | cos (x)          3*log(1 + cos(x))   3*log(-1 + cos(x))     - 5*cos (x) + 3*cos(x)  
 | ------- dx = C - ----------------- + ------------------ + --------------------------
 |    5                     16                  16                     2           4   
 | sin (x)                                                   8 - 16*cos (x) + 8*cos (x)
 |                                                                                     
/                                                                                      
$$-{{3\,\log \left(\cos x+1\right)}\over{16}}+{{3\,\log \left(\cos x- 1\right)}\over{16}}-{{5\,\cos ^3x-3\,\cos x}\over{8\,\cos ^4x-16\, \cos ^2x+8}}$$
The graph
The answer [src]
     3*pi*I
oo + ------
       16  
$${\it \%a}$$
=
=
     3*pi*I
oo + ------
       16  
$$\infty + \frac{3 i \pi}{16}$$
Numerical answer [src]
7.26749061658134e+75
7.26749061658134e+75
The graph
Integral of cos^4x/sin^5x dx

    Use the examples entering the upper and lower limits of integration.