Mister Exam

Other calculators

Integral of (cos3x-2x^3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  /              3\   
 |  \cos(3*x) - 2*x / dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(- 2 x^{3} + \cos{\left(3 x \right)}\right)\, dx$$
Integral(cos(3*x) - 2*x^3, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                        
 |                             4           
 | /              3\          x    sin(3*x)
 | \cos(3*x) - 2*x / dx = C - -- + --------
 |                            2       3    
/                                          
$$\int \left(- 2 x^{3} + \cos{\left(3 x \right)}\right)\, dx = C - \frac{x^{4}}{2} + \frac{\sin{\left(3 x \right)}}{3}$$
The graph
The answer [src]
  1   sin(3)
- - + ------
  2     3   
$$- \frac{1}{2} + \frac{\sin{\left(3 \right)}}{3}$$
=
=
  1   sin(3)
- - + ------
  2     3   
$$- \frac{1}{2} + \frac{\sin{\left(3 \right)}}{3}$$
-1/2 + sin(3)/3
Numerical answer [src]
-0.452959997313378
-0.452959997313378

    Use the examples entering the upper and lower limits of integration.