Mister Exam

Integral of cost dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  cos(t) dt
 |           
/            
0            
01cos(t)dt\int\limits_{0}^{1} \cos{\left(t \right)}\, dt
Integral(cos(t), (t, 0, 1))
Detail solution
  1. The integral of cosine is sine:

    cos(t)dt=sin(t)\int \cos{\left(t \right)}\, dt = \sin{\left(t \right)}

  2. Add the constant of integration:

    sin(t)+constant\sin{\left(t \right)}+ \mathrm{constant}


The answer is:

sin(t)+constant\sin{\left(t \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 | cos(t) dt = C + sin(t)
 |                       
/                        
cos(t)dt=C+sin(t)\int \cos{\left(t \right)}\, dt = C + \sin{\left(t \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
sin(1)
sin(1)\sin{\left(1 \right)}
=
=
sin(1)
sin(1)\sin{\left(1 \right)}
sin(1)
Numerical answer [src]
0.841470984807897
0.841470984807897
The graph
Integral of cost dx

    Use the examples entering the upper and lower limits of integration.