Mister Exam

Other calculators

Integral of cossqrtx*dx/sqrtx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0              
  /              
 |               
 |     /  ___\   
 |  cos\\/ x /   
 |  ---------- dx
 |      ___      
 |    \/ x       
 |               
/                
0                
$$\int\limits_{0}^{0} \frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx$$
Integral(cos(sqrt(x))/sqrt(x), (x, 0, 0))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                                 
 |    /  ___\                      
 | cos\\/ x /               /  ___\
 | ---------- dx = C + 2*sin\\/ x /
 |     ___                         
 |   \/ x                          
 |                                 
/                                  
$$\int \frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx = C + 2 \sin{\left(\sqrt{x} \right)}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.