Mister Exam

Other calculators


cos(19*x)

Integral of cos(19*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  cos(19*x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} \cos{\left(19 x \right)}\, dx$$
Integral(cos(19*x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                    sin(19*x)
 | cos(19*x) dx = C + ---------
 |                        19   
/                              
$$\int \cos{\left(19 x \right)}\, dx = C + \frac{\sin{\left(19 x \right)}}{19}$$
The graph
The answer [src]
sin(19)
-------
   19  
$$\frac{\sin{\left(19 \right)}}{19}$$
=
=
sin(19)
-------
   19  
$$\frac{\sin{\left(19 \right)}}{19}$$
Numerical answer [src]
0.00788827419278696
0.00788827419278696
The graph
Integral of cos(19*x) dx

    Use the examples entering the upper and lower limits of integration.