Integral of cos(5*x)cos3xdx dx
The solution
Detail solution
-
Rewrite the integrand:
cos(3x)cos(5x)=64cos8(x)−128cos6(x)+80cos4(x)−15cos2(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫64cos8(x)dx=64∫cos8(x)dx
-
Rewrite the integrand:
cos8(x)=(2cos(2x)+21)4
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(2cos(2x)+21)4=16cos4(2x)+4cos3(2x)+83cos2(2x)+4cos(2x)+161
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫16cos4(2x)dx=16∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫8cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 1283x+128sin(4x)+1024sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos3(2x)dx=4∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
Method #2
-
Rewrite the integrand:
(1−sin2(2x))cos(2x)=−sin2(2x)cos(2x)+cos(2x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(2x)cos(2x))dx=−∫sin2(2x)cos(2x)dx
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫2u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
Now substitute u back in:
6sin3(2x)
So, the result is: −6sin3(2x)
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
The result is: −6sin3(2x)+2sin(2x)
Method #3
-
Rewrite the integrand:
(1−sin2(2x))cos(2x)=−sin2(2x)cos(2x)+cos(2x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(2x)cos(2x))dx=−∫sin2(2x)cos(2x)dx
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫2u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 6u3
Now substitute u back in:
6sin3(2x)
So, the result is: −6sin3(2x)
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
The result is: −6sin3(2x)+2sin(2x)
So, the result is: −24sin3(2x)+8sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos2(2x)dx=83∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 163x+643sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(2x)dx=4∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 8sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫161dx=16x
The result is: 12835x−24sin3(2x)+4sin(2x)+1287sin(4x)+1024sin(8x)
Method #2
-
Rewrite the integrand:
(2cos(2x)+21)4=16cos4(2x)+4cos3(2x)+83cos2(2x)+4cos(2x)+161
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫16cos4(2x)dx=16∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫8cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 1283x+128sin(4x)+1024sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos3(2x)dx=4∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: −24sin3(2x)+8sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos2(2x)dx=83∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 163x+643sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(2x)dx=4∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 8sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫161dx=16x
The result is: 12835x−24sin3(2x)+4sin(2x)+1287sin(4x)+1024sin(8x)
So, the result is: 235x−38sin3(2x)+16sin(2x)+27sin(4x)+16sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−128cos6(x))dx=−128∫cos6(x)dx
-
Rewrite the integrand:
cos6(x)=(2cos(2x)+21)3
-
Rewrite the integrand:
(2cos(2x)+21)3=8cos3(2x)+83cos2(2x)+83cos(2x)+81
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos3(2x)dx=8∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: −48sin3(2x)+16sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos2(2x)dx=83∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 163x+643sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫83cos(2x)dx=83∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 163sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫81dx=8x
The result is: 165x−48sin3(2x)+4sin(2x)+643sin(4x)
So, the result is: −40x+38sin3(2x)−32sin(2x)−6sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫80cos4(x)dx=80∫cos4(x)dx
-
Rewrite the integrand:
cos4(x)=(2cos(2x)+21)2
-
Rewrite the integrand:
(2cos(2x)+21)2=4cos2(2x)+2cos(2x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(2x)dx=4∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: 8x+32sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(2x)dx=2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 4sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+4sin(2x)+32sin(4x)
So, the result is: 30x+20sin(2x)+25sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−15cos2(x))dx=−15∫cos2(x)dx
-
Rewrite the integrand:
cos2(x)=2cos(2x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(2x)dx=2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 4sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+4sin(2x)
So, the result is: −215x−415sin(2x)
The result is: 4sin(2x)+16sin(8x)
-
Add the constant of integration:
4sin(2x)+16sin(8x)+constant
The answer is:
4sin(2x)+16sin(8x)+constant
The answer (Indefinite)
[src]
/
| sin(2*x) sin(8*x)
| cos(5*x)*cos(3*x) dx = C + -------- + --------
| 4 16
/
∫cos(3x)cos(5x)dx=C+4sin(2x)+16sin(8x)
The graph
___________ ___________
/ ___ / ___
/ 1 \/ 2 / 1 \/ 2
- / - - ----- * / - + -----
\/ 2 4 \/ 2 4
-----------------------------------
2
−221−4242+21
=
___________ ___________
/ ___ / ___
/ 1 \/ 2 / 1 \/ 2
- / - - ----- * / - + -----
\/ 2 4 \/ 2 4
-----------------------------------
2
−221−4242+21
-sqrt(1/2 - sqrt(2)/4)*sqrt(1/2 + sqrt(2)/4)/2
Use the examples entering the upper and lower limits of integration.