Mister Exam

Other calculators

Integral of cos(15*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  cos(15*x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} \cos{\left(15 x \right)}\, dx$$
Integral(cos(15*x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                    sin(15*x)
 | cos(15*x) dx = C + ---------
 |                        15   
/                              
$$\int \cos{\left(15 x \right)}\, dx = C + \frac{\sin{\left(15 x \right)}}{15}$$
The graph
The answer [src]
sin(15)
-------
   15  
$$\frac{\sin{\left(15 \right)}}{15}$$
=
=
sin(15)
-------
   15  
$$\frac{\sin{\left(15 \right)}}{15}$$
sin(15)/15
Numerical answer [src]
0.0433525226771411
0.0433525226771411

    Use the examples entering the upper and lower limits of integration.