Mister Exam

Other calculators

Integral of cos7x*cos9x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  cos(7*x)*cos(9*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \cos{\left(7 x \right)} \cos{\left(9 x \right)}\, dx$$
Integral(cos(7*x)*cos(9*x), (x, 0, 1))
The graph
The answer [src]
  7*cos(9)*sin(7)   9*cos(7)*sin(9)
- --------------- + ---------------
         32                32      
$$\frac{9 \sin{\left(9 \right)} \cos{\left(7 \right)}}{32} - \frac{7 \sin{\left(7 \right)} \cos{\left(9 \right)}}{32}$$
=
=
  7*cos(9)*sin(7)   9*cos(7)*sin(9)
- --------------- + ---------------
         32                32      
$$\frac{9 \sin{\left(9 \right)} \cos{\left(7 \right)}}{32} - \frac{7 \sin{\left(7 \right)} \cos{\left(9 \right)}}{32}$$
-7*cos(9)*sin(7)/32 + 9*cos(7)*sin(9)/32
Numerical answer [src]
0.218327378060637
0.218327378060637

    Use the examples entering the upper and lower limits of integration.