Mister Exam

Integral of cos5x*cosxdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*p                  
  /                   
 |                    
 |  cos(5*x)*cos(x) dx
 |                    
/                     
0                     
02pcos(x)cos(5x)dx\int\limits_{0}^{2 p} \cos{\left(x \right)} \cos{\left(5 x \right)}\, dx
Integral(cos(5*x)*cos(x), (x, 0, 2*p))
Detail solution
  1. Rewrite the integrand:

    cos(x)cos(5x)=16cos6(x)20cos4(x)+5cos2(x)\cos{\left(x \right)} \cos{\left(5 x \right)} = 16 \cos^{6}{\left(x \right)} - 20 \cos^{4}{\left(x \right)} + 5 \cos^{2}{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      16cos6(x)dx=16cos6(x)dx\int 16 \cos^{6}{\left(x \right)}\, dx = 16 \int \cos^{6}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos6(x)=(cos(2x)2+12)3\cos^{6}{\left(x \right)} = \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{3}

      2. There are multiple ways to do this integral.

        Method #1

        1. Rewrite the integrand:

          (cos(2x)2+12)3=cos3(2x)8+3cos2(2x)8+3cos(2x)8+18\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{3} = \frac{\cos^{3}{\left(2 x \right)}}{8} + \frac{3 \cos^{2}{\left(2 x \right)}}{8} + \frac{3 \cos{\left(2 x \right)}}{8} + \frac{1}{8}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos3(2x)8dx=cos3(2x)dx8\int \frac{\cos^{3}{\left(2 x \right)}}{8}\, dx = \frac{\int \cos^{3}{\left(2 x \right)}\, dx}{8}

            1. Rewrite the integrand:

              cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

            2. There are multiple ways to do this integral.

              Method #1

              1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

                Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

                (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

                1. Integrate term-by-term:

                  1. The integral of a constant is the constant times the variable of integration:

                    12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    So, the result is: u36- \frac{u^{3}}{6}

                  The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

                Now substitute uu back in:

                sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

              Method #2

              1. Rewrite the integrand:

                (1sin2(2x))cos(2x)=sin2(2x)cos(2x)+cos(2x)\left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)} = - \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)} + \cos{\left(2 x \right)}

              2. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (sin2(2x)cos(2x))dx=sin2(2x)cos(2x)dx\int \left(- \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\right)\, dx = - \int \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\, dx

                  1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

                    Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute du2\frac{du}{2}:

                    u22du\int \frac{u^{2}}{2}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      u2du=u2du2\int u^{2}\, du = \frac{\int u^{2}\, du}{2}

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                      So, the result is: u36\frac{u^{3}}{6}

                    Now substitute uu back in:

                    sin3(2x)6\frac{\sin^{3}{\left(2 x \right)}}{6}

                  So, the result is: sin3(2x)6- \frac{\sin^{3}{\left(2 x \right)}}{6}

                1. Let u=2xu = 2 x.

                  Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

                  cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                  Now substitute uu back in:

                  sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

                The result is: sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

              Method #3

              1. Rewrite the integrand:

                (1sin2(2x))cos(2x)=sin2(2x)cos(2x)+cos(2x)\left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)} = - \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)} + \cos{\left(2 x \right)}

              2. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (sin2(2x)cos(2x))dx=sin2(2x)cos(2x)dx\int \left(- \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\right)\, dx = - \int \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\, dx

                  1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

                    Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute du2\frac{du}{2}:

                    u22du\int \frac{u^{2}}{2}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      u2du=u2du2\int u^{2}\, du = \frac{\int u^{2}\, du}{2}

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                      So, the result is: u36\frac{u^{3}}{6}

                    Now substitute uu back in:

                    sin3(2x)6\frac{\sin^{3}{\left(2 x \right)}}{6}

                  So, the result is: sin3(2x)6- \frac{\sin^{3}{\left(2 x \right)}}{6}

                1. Let u=2xu = 2 x.

                  Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

                  cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                  Now substitute uu back in:

                  sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

                The result is: sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: sin3(2x)48+sin(2x)16- \frac{\sin^{3}{\left(2 x \right)}}{48} + \frac{\sin{\left(2 x \right)}}{16}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3cos2(2x)8dx=3cos2(2x)dx8\int \frac{3 \cos^{2}{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos^{2}{\left(2 x \right)}\, dx}{8}

            1. Rewrite the integrand:

              cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

            2. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

              The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

            So, the result is: 3x16+3sin(4x)64\frac{3 x}{16} + \frac{3 \sin{\left(4 x \right)}}{64}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3cos(2x)8dx=3cos(2x)dx8\int \frac{3 \cos{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos{\left(2 x \right)}\, dx}{8}

            1. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

              cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

              Now substitute uu back in:

              sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 3sin(2x)16\frac{3 \sin{\left(2 x \right)}}{16}

          1. The integral of a constant is the constant times the variable of integration:

            18dx=x8\int \frac{1}{8}\, dx = \frac{x}{8}

          The result is: 5x16sin3(2x)48+sin(2x)4+3sin(4x)64\frac{5 x}{16} - \frac{\sin^{3}{\left(2 x \right)}}{48} + \frac{\sin{\left(2 x \right)}}{4} + \frac{3 \sin{\left(4 x \right)}}{64}

        Method #2

        1. Rewrite the integrand:

          (cos(2x)2+12)3=cos3(2x)8+3cos2(2x)8+3cos(2x)8+18\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{3} = \frac{\cos^{3}{\left(2 x \right)}}{8} + \frac{3 \cos^{2}{\left(2 x \right)}}{8} + \frac{3 \cos{\left(2 x \right)}}{8} + \frac{1}{8}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos3(2x)8dx=cos3(2x)dx8\int \frac{\cos^{3}{\left(2 x \right)}}{8}\, dx = \frac{\int \cos^{3}{\left(2 x \right)}\, dx}{8}

            1. Rewrite the integrand:

              cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

            2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

              Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

              (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

              1. Integrate term-by-term:

                1. The integral of a constant is the constant times the variable of integration:

                  12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                  So, the result is: u36- \frac{u^{3}}{6}

                The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

              Now substitute uu back in:

              sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: sin3(2x)48+sin(2x)16- \frac{\sin^{3}{\left(2 x \right)}}{48} + \frac{\sin{\left(2 x \right)}}{16}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3cos2(2x)8dx=3cos2(2x)dx8\int \frac{3 \cos^{2}{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos^{2}{\left(2 x \right)}\, dx}{8}

            1. Rewrite the integrand:

              cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

            2. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

              The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

            So, the result is: 3x16+3sin(4x)64\frac{3 x}{16} + \frac{3 \sin{\left(4 x \right)}}{64}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3cos(2x)8dx=3cos(2x)dx8\int \frac{3 \cos{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos{\left(2 x \right)}\, dx}{8}

            1. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

              cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

              Now substitute uu back in:

              sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

            So, the result is: 3sin(2x)16\frac{3 \sin{\left(2 x \right)}}{16}

          1. The integral of a constant is the constant times the variable of integration:

            18dx=x8\int \frac{1}{8}\, dx = \frac{x}{8}

          The result is: 5x16sin3(2x)48+sin(2x)4+3sin(4x)64\frac{5 x}{16} - \frac{\sin^{3}{\left(2 x \right)}}{48} + \frac{\sin{\left(2 x \right)}}{4} + \frac{3 \sin{\left(4 x \right)}}{64}

      So, the result is: 5xsin3(2x)3+4sin(2x)+3sin(4x)45 x - \frac{\sin^{3}{\left(2 x \right)}}{3} + 4 \sin{\left(2 x \right)} + \frac{3 \sin{\left(4 x \right)}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (20cos4(x))dx=20cos4(x)dx\int \left(- 20 \cos^{4}{\left(x \right)}\right)\, dx = - 20 \int \cos^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos4(x)=(cos(2x)2+12)2\cos^{4}{\left(x \right)} = \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{2}

      2. Rewrite the integrand:

        (cos(2x)2+12)2=cos2(2x)4+cos(2x)2+14\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(2 x \right)}}{4} + \frac{\cos{\left(2 x \right)}}{2} + \frac{1}{4}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos2(2x)4dx=cos2(2x)dx4\int \frac{\cos^{2}{\left(2 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(2 x \right)}\, dx}{4}

          1. Rewrite the integrand:

            cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

            The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

          So, the result is: x8+sin(4x)32\frac{x}{8} + \frac{\sin{\left(4 x \right)}}{32}

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(2x)2dx=cos(2x)dx2\int \frac{\cos{\left(2 x \right)}}{2}\, dx = \frac{\int \cos{\left(2 x \right)}\, dx}{2}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin(2x)4\frac{\sin{\left(2 x \right)}}{4}

        1. The integral of a constant is the constant times the variable of integration:

          14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

        The result is: 3x8+sin(2x)4+sin(4x)32\frac{3 x}{8} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{32}

      So, the result is: 15x25sin(2x)5sin(4x)8- \frac{15 x}{2} - 5 \sin{\left(2 x \right)} - \frac{5 \sin{\left(4 x \right)}}{8}

    1. The integral of a constant times a function is the constant times the integral of the function:

      5cos2(x)dx=5cos2(x)dx\int 5 \cos^{2}{\left(x \right)}\, dx = 5 \int \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos2(x)=cos(2x)2+12\cos^{2}{\left(x \right)} = \frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(2x)2dx=cos(2x)dx2\int \frac{\cos{\left(2 x \right)}}{2}\, dx = \frac{\int \cos{\left(2 x \right)}\, dx}{2}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin(2x)4\frac{\sin{\left(2 x \right)}}{4}

        1. The integral of a constant is the constant times the variable of integration:

          12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

        The result is: x2+sin(2x)4\frac{x}{2} + \frac{\sin{\left(2 x \right)}}{4}

      So, the result is: 5x2+5sin(2x)4\frac{5 x}{2} + \frac{5 \sin{\left(2 x \right)}}{4}

    The result is: sin3(2x)3+sin(2x)4+sin(4x)8- \frac{\sin^{3}{\left(2 x \right)}}{3} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{8}

  3. Now simplify:

    sin(4x)8+sin(6x)12\frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(6 x \right)}}{12}

  4. Add the constant of integration:

    sin(4x)8+sin(6x)12+constant\frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(6 x \right)}}{12}+ \mathrm{constant}


The answer is:

sin(4x)8+sin(6x)12+constant\frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(6 x \right)}}{12}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            3                           
 |                          sin (2*x)   sin(2*x)   sin(4*x)
 | cos(5*x)*cos(x) dx = C - --------- + -------- + --------
 |                              3          4          8    
/                                                          
cos(x)cos(5x)dx=Csin3(2x)3+sin(2x)4+sin(4x)8\int \cos{\left(x \right)} \cos{\left(5 x \right)}\, dx = C - \frac{\sin^{3}{\left(2 x \right)}}{3} + \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{8}
The answer [src]
  cos(10*p)*sin(2*p)   5*cos(2*p)*sin(10*p)
- ------------------ + --------------------
          24                    24         
sin(2p)cos(10p)24+5sin(10p)cos(2p)24- \frac{\sin{\left(2 p \right)} \cos{\left(10 p \right)}}{24} + \frac{5 \sin{\left(10 p \right)} \cos{\left(2 p \right)}}{24}
=
=
  cos(10*p)*sin(2*p)   5*cos(2*p)*sin(10*p)
- ------------------ + --------------------
          24                    24         
sin(2p)cos(10p)24+5sin(10p)cos(2p)24- \frac{\sin{\left(2 p \right)} \cos{\left(10 p \right)}}{24} + \frac{5 \sin{\left(10 p \right)} \cos{\left(2 p \right)}}{24}
-cos(10*p)*sin(2*p)/24 + 5*cos(2*p)*sin(10*p)/24

    Use the examples entering the upper and lower limits of integration.