Mister Exam

Other calculators

Integral of cos(5x)*(cos(2x))^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |              2        
 |  cos(5*x)*cos (2*x) dx
 |                       
/                        
1                        
11cos2(2x)cos(5x)dx\int\limits_{1}^{1} \cos^{2}{\left(2 x \right)} \cos{\left(5 x \right)}\, dx
Integral(cos(5*x)*cos(2*x)^2, (x, 1, 1))
Detail solution
  1. Rewrite the integrand:

    cos2(2x)cos(5x)=64cos9(x)144cos7(x)+116cos5(x)40cos3(x)+5cos(x)\cos^{2}{\left(2 x \right)} \cos{\left(5 x \right)} = 64 \cos^{9}{\left(x \right)} - 144 \cos^{7}{\left(x \right)} + 116 \cos^{5}{\left(x \right)} - 40 \cos^{3}{\left(x \right)} + 5 \cos{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      64cos9(x)dx=64cos9(x)dx\int 64 \cos^{9}{\left(x \right)}\, dx = 64 \int \cos^{9}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos9(x)=(1sin2(x))4cos(x)\cos^{9}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{4} \cos{\left(x \right)}

      2. There are multiple ways to do this integral.

        Method #1

        1. Rewrite the integrand:

          (1sin2(x))4cos(x)=sin8(x)cos(x)4sin6(x)cos(x)+6sin4(x)cos(x)4sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{4} \cos{\left(x \right)} = \sin^{8}{\left(x \right)} \cos{\left(x \right)} - 4 \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 6 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 4 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

        2. Integrate term-by-term:

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u8du\int u^{8}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

            Now substitute uu back in:

            sin9(x)9\frac{\sin^{9}{\left(x \right)}}{9}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (4sin6(x)cos(x))dx=4sin6(x)cos(x)dx\int \left(- 4 \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 4 \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u6du\int u^{6}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

              Now substitute uu back in:

              sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

            So, the result is: 4sin7(x)7- \frac{4 \sin^{7}{\left(x \right)}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            6sin4(x)cos(x)dx=6sin4(x)cos(x)dx\int 6 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 6 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u4du\int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              Now substitute uu back in:

              sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

            So, the result is: 6sin5(x)5\frac{6 \sin^{5}{\left(x \right)}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (4sin2(x)cos(x))dx=4sin2(x)cos(x)dx\int \left(- 4 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 4 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u2du\int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              Now substitute uu back in:

              sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

            So, the result is: 4sin3(x)3- \frac{4 \sin^{3}{\left(x \right)}}{3}

          1. The integral of cosine is sine:

            cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

          The result is: sin9(x)94sin7(x)7+6sin5(x)54sin3(x)3+sin(x)\frac{\sin^{9}{\left(x \right)}}{9} - \frac{4 \sin^{7}{\left(x \right)}}{7} + \frac{6 \sin^{5}{\left(x \right)}}{5} - \frac{4 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

        Method #2

        1. Rewrite the integrand:

          (1sin2(x))4cos(x)=sin8(x)cos(x)4sin6(x)cos(x)+6sin4(x)cos(x)4sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{4} \cos{\left(x \right)} = \sin^{8}{\left(x \right)} \cos{\left(x \right)} - 4 \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 6 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 4 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

        2. Integrate term-by-term:

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u8du\int u^{8}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

            Now substitute uu back in:

            sin9(x)9\frac{\sin^{9}{\left(x \right)}}{9}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (4sin6(x)cos(x))dx=4sin6(x)cos(x)dx\int \left(- 4 \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 4 \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u6du\int u^{6}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

              Now substitute uu back in:

              sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

            So, the result is: 4sin7(x)7- \frac{4 \sin^{7}{\left(x \right)}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            6sin4(x)cos(x)dx=6sin4(x)cos(x)dx\int 6 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 6 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u4du\int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              Now substitute uu back in:

              sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

            So, the result is: 6sin5(x)5\frac{6 \sin^{5}{\left(x \right)}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (4sin2(x)cos(x))dx=4sin2(x)cos(x)dx\int \left(- 4 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 4 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u2du\int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              Now substitute uu back in:

              sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

            So, the result is: 4sin3(x)3- \frac{4 \sin^{3}{\left(x \right)}}{3}

          1. The integral of cosine is sine:

            cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

          The result is: sin9(x)94sin7(x)7+6sin5(x)54sin3(x)3+sin(x)\frac{\sin^{9}{\left(x \right)}}{9} - \frac{4 \sin^{7}{\left(x \right)}}{7} + \frac{6 \sin^{5}{\left(x \right)}}{5} - \frac{4 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

      So, the result is: 64sin9(x)9256sin7(x)7+384sin5(x)5256sin3(x)3+64sin(x)\frac{64 \sin^{9}{\left(x \right)}}{9} - \frac{256 \sin^{7}{\left(x \right)}}{7} + \frac{384 \sin^{5}{\left(x \right)}}{5} - \frac{256 \sin^{3}{\left(x \right)}}{3} + 64 \sin{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (144cos7(x))dx=144cos7(x)dx\int \left(- 144 \cos^{7}{\left(x \right)}\right)\, dx = - 144 \int \cos^{7}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos7(x)=(1sin2(x))3cos(x)\cos^{7}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{3} \cos{\left(x \right)}

      2. Rewrite the integrand:

        (1sin2(x))3cos(x)=sin6(x)cos(x)+3sin4(x)cos(x)3sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{3} \cos{\left(x \right)} = - \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (sin6(x)cos(x))dx=sin6(x)cos(x)dx\int \left(- \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u6du\int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            Now substitute uu back in:

            sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

          So, the result is: sin7(x)7- \frac{\sin^{7}{\left(x \right)}}{7}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3sin4(x)cos(x)dx=3sin4(x)cos(x)dx\int 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 3 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u4du\int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            Now substitute uu back in:

            sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

          So, the result is: 3sin5(x)5\frac{3 \sin^{5}{\left(x \right)}}{5}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (3sin2(x)cos(x))dx=3sin2(x)cos(x)dx\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 3 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u2du\int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            Now substitute uu back in:

            sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

          So, the result is: sin3(x)- \sin^{3}{\left(x \right)}

        1. The integral of cosine is sine:

          cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

        The result is: sin7(x)7+3sin5(x)5sin3(x)+sin(x)- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{3 \sin^{5}{\left(x \right)}}{5} - \sin^{3}{\left(x \right)} + \sin{\left(x \right)}

      So, the result is: 144sin7(x)7432sin5(x)5+144sin3(x)144sin(x)\frac{144 \sin^{7}{\left(x \right)}}{7} - \frac{432 \sin^{5}{\left(x \right)}}{5} + 144 \sin^{3}{\left(x \right)} - 144 \sin{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      116cos5(x)dx=116cos5(x)dx\int 116 \cos^{5}{\left(x \right)}\, dx = 116 \int \cos^{5}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos5(x)=(1sin2(x))2cos(x)\cos^{5}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)}

      2. Rewrite the integrand:

        (1sin2(x))2cos(x)=sin4(x)cos(x)2sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)} = \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

      3. Integrate term-by-term:

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u4du\int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          Now substitute uu back in:

          sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (2sin2(x)cos(x))dx=2sin2(x)cos(x)dx\int \left(- 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 2 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u2du\int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            Now substitute uu back in:

            sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

          So, the result is: 2sin3(x)3- \frac{2 \sin^{3}{\left(x \right)}}{3}

        1. The integral of cosine is sine:

          cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

        The result is: sin5(x)52sin3(x)3+sin(x)\frac{\sin^{5}{\left(x \right)}}{5} - \frac{2 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

      So, the result is: 116sin5(x)5232sin3(x)3+116sin(x)\frac{116 \sin^{5}{\left(x \right)}}{5} - \frac{232 \sin^{3}{\left(x \right)}}{3} + 116 \sin{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (40cos3(x))dx=40cos3(x)dx\int \left(- 40 \cos^{3}{\left(x \right)}\right)\, dx = - 40 \int \cos^{3}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        cos3(x)=(1sin2(x))cos(x)\cos^{3}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}

      2. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        (1u2)du\int \left(1 - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u33+u- \frac{u^{3}}{3} + u

        Now substitute uu back in:

        sin3(x)3+sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

      So, the result is: 40sin3(x)340sin(x)\frac{40 \sin^{3}{\left(x \right)}}{3} - 40 \sin{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      5cos(x)dx=5cos(x)dx\int 5 \cos{\left(x \right)}\, dx = 5 \int \cos{\left(x \right)}\, dx

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      So, the result is: 5sin(x)5 \sin{\left(x \right)}

    The result is: 64sin9(x)916sin7(x)+68sin5(x)516sin3(x)3+sin(x)\frac{64 \sin^{9}{\left(x \right)}}{9} - 16 \sin^{7}{\left(x \right)} + \frac{68 \sin^{5}{\left(x \right)}}{5} - \frac{16 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

  3. Now simplify:

    (320sin8(x)720sin6(x)+612sin4(x)240sin2(x)+45)sin(x)45\frac{\left(320 \sin^{8}{\left(x \right)} - 720 \sin^{6}{\left(x \right)} + 612 \sin^{4}{\left(x \right)} - 240 \sin^{2}{\left(x \right)} + 45\right) \sin{\left(x \right)}}{45}

  4. Add the constant of integration:

    (320sin8(x)720sin6(x)+612sin4(x)240sin2(x)+45)sin(x)45+constant\frac{\left(320 \sin^{8}{\left(x \right)} - 720 \sin^{6}{\left(x \right)} + 612 \sin^{4}{\left(x \right)} - 240 \sin^{2}{\left(x \right)} + 45\right) \sin{\left(x \right)}}{45}+ \mathrm{constant}


The answer is:

(320sin8(x)720sin6(x)+612sin4(x)240sin2(x)+45)sin(x)45+constant\frac{\left(320 \sin^{8}{\left(x \right)} - 720 \sin^{6}{\left(x \right)} + 612 \sin^{4}{\left(x \right)} - 240 \sin^{2}{\left(x \right)} + 45\right) \sin{\left(x \right)}}{45}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                      
 |                                                3            9            5            
 |             2                     7      16*sin (x)   64*sin (x)   68*sin (x)         
 | cos(5*x)*cos (2*x) dx = C - 16*sin (x) - ---------- + ---------- + ---------- + sin(x)
 |                                              3            9            5              
/                                                                                        
cos2(2x)cos(5x)dx=C+64sin9(x)916sin7(x)+68sin5(x)516sin3(x)3+sin(x)\int \cos^{2}{\left(2 x \right)} \cos{\left(5 x \right)}\, dx = C + \frac{64 \sin^{9}{\left(x \right)}}{9} - 16 \sin^{7}{\left(x \right)} + \frac{68 \sin^{5}{\left(x \right)}}{5} - \frac{16 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}
The graph
1.00001.01001.00101.00201.00301.00401.00501.00601.00701.00801.00900.000.20
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.