1 / | | 2 | cos(5*x)*cos (2*x) dx | / 1
Integral(cos(5*x)*cos(2*x)^2, (x, 1, 1))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
There are multiple ways to do this integral.
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of cosine is sine:
The result is:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of cosine is sine:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of cosine is sine:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of cosine is sine:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3 9 5 | 2 7 16*sin (x) 64*sin (x) 68*sin (x) | cos(5*x)*cos (2*x) dx = C - 16*sin (x) - ---------- + ---------- + ---------- + sin(x) | 3 9 5 /
Use the examples entering the upper and lower limits of integration.