Mister Exam

Other calculators


cos(4x+3)dx

Integral of cos(4x+3)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  cos(4*x + 3)*1 dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \cos{\left(4 x + 3 \right)} 1\, dx$$
Integral(cos(4*x + 3)*1, (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                         sin(4*x + 3)
 | cos(4*x + 3)*1 dx = C + ------------
 |                              4      
/                                      
$$\int \cos{\left(4 x + 3 \right)} 1\, dx = C + \frac{\sin{\left(4 x + 3 \right)}}{4}$$
The graph
The answer [src]
  sin(3)   sin(7)
- ------ + ------
    4        4   
$$- \frac{\sin{\left(3 \right)}}{4} + \frac{\sin{\left(7 \right)}}{4}$$
=
=
  sin(3)   sin(7)
- ------ + ------
    4        4   
$$- \frac{\sin{\left(3 \right)}}{4} + \frac{\sin{\left(7 \right)}}{4}$$
Numerical answer [src]
0.12896664766473
0.12896664766473
The graph
Integral of cos(4x+3)dx dx

    Use the examples entering the upper and lower limits of integration.