Mister Exam

Other calculators


cos(4x-3)dx

Integral of cos(4x-3)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  cos(4*x - 3) dx
 |                 
/                  
0                  
01cos(4x3)dx\int\limits_{0}^{1} \cos{\left(4 x - 3 \right)}\, dx
Integral(cos(4*x - 3), (x, 0, 1))
Detail solution
  1. Let u=4x3u = 4 x - 3.

    Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

    cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

      1. The integral of cosine is sine:

        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

      So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

    Now substitute uu back in:

    sin(4x3)4\frac{\sin{\left(4 x - 3 \right)}}{4}

  2. Now simplify:

    sin(4x3)4\frac{\sin{\left(4 x - 3 \right)}}{4}

  3. Add the constant of integration:

    sin(4x3)4+constant\frac{\sin{\left(4 x - 3 \right)}}{4}+ \mathrm{constant}


The answer is:

sin(4x3)4+constant\frac{\sin{\left(4 x - 3 \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                       sin(4*x - 3)
 | cos(4*x - 3) dx = C + ------------
 |                            4      
/                                    
cos(4x3)dx=C+sin(4x3)4\int \cos{\left(4 x - 3 \right)}\, dx = C + \frac{\sin{\left(4 x - 3 \right)}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
sin(1)   sin(3)
------ + ------
  4        4   
sin(3)4+sin(1)4\frac{\sin{\left(3 \right)}}{4} + \frac{\sin{\left(1 \right)}}{4}
=
=
sin(1)   sin(3)
------ + ------
  4        4   
sin(3)4+sin(1)4\frac{\sin{\left(3 \right)}}{4} + \frac{\sin{\left(1 \right)}}{4}
sin(1)/4 + sin(3)/4
Numerical answer [src]
0.245647748216941
0.245647748216941
The graph
Integral of cos(4x-3)dx dx

    Use the examples entering the upper and lower limits of integration.