Mister Exam

Other calculators


cos(4x-3)dx

Integral of cos(4x-3)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  cos(4*x - 3) dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \cos{\left(4 x - 3 \right)}\, dx$$
Integral(cos(4*x - 3), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                       sin(4*x - 3)
 | cos(4*x - 3) dx = C + ------------
 |                            4      
/                                    
$$\int \cos{\left(4 x - 3 \right)}\, dx = C + \frac{\sin{\left(4 x - 3 \right)}}{4}$$
The graph
The answer [src]
sin(1)   sin(3)
------ + ------
  4        4   
$$\frac{\sin{\left(3 \right)}}{4} + \frac{\sin{\left(1 \right)}}{4}$$
=
=
sin(1)   sin(3)
------ + ------
  4        4   
$$\frac{\sin{\left(3 \right)}}{4} + \frac{\sin{\left(1 \right)}}{4}$$
sin(1)/4 + sin(3)/4
Numerical answer [src]
0.245647748216941
0.245647748216941
The graph
Integral of cos(4x-3)dx dx

    Use the examples entering the upper and lower limits of integration.