Mister Exam

Integral of cos(3z)dz dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 I + 2*pi           
     /              
    |               
    |    cos(3*z) dz
    |               
   /                
 pi - I             
$$\int\limits_{\pi - i}^{2 \pi + i} \cos{\left(3 z \right)}\, dz$$
Integral(cos(3*z), (z, pi - i, i + 2*pi))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          
 |                   sin(3*z)
 | cos(3*z) dz = C + --------
 |                      3    
/                            
$$\int \cos{\left(3 z \right)}\, dz = C + \frac{\sin{\left(3 z \right)}}{3}$$
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
(-3.69880140875628e-15 - 5.75457954702547e-22j)
(-3.69880140875628e-15 - 5.75457954702547e-22j)

    Use the examples entering the upper and lower limits of integration.