Mister Exam

Other calculators


cos3x(sinx)^2

Integral of cos3x(sinx)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                    
  /                    
 |                     
 |              2      
 |  cos(3*x)*sin (x) dx
 |                     
/                      
1                      
13sin2(x)cos(3x)dx\int\limits_{1}^{3} \sin^{2}{\left(x \right)} \cos{\left(3 x \right)}\, dx
Integral(cos(3*x)*sin(x)^2, (x, 1, 3))
Detail solution
  1. Rewrite the integrand:

    sin2(x)cos(3x)=4sin2(x)cos3(x)3sin2(x)cos(x)\sin^{2}{\left(x \right)} \cos{\left(3 x \right)} = 4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)} - 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      4sin2(x)cos3(x)dx=4sin2(x)cos3(x)dx\int 4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx = 4 \int \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin2(x)cos3(x)=(1sin2(x))sin2(x)cos(x)\sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} \cos{\left(x \right)}

      2. There are multiple ways to do this integral.

        Method #1

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          (u4+u2)du\int \left(- u^{4} + u^{2}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              So, the result is: u55- \frac{u^{5}}{5}

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            The result is: u55+u33- \frac{u^{5}}{5} + \frac{u^{3}}{3}

          Now substitute uu back in:

          sin5(x)5+sin3(x)3- \frac{\sin^{5}{\left(x \right)}}{5} + \frac{\sin^{3}{\left(x \right)}}{3}

        Method #2

        1. Rewrite the integrand:

          (1sin2(x))sin2(x)cos(x)=sin4(x)cos(x)+sin2(x)cos(x)\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} \cos{\left(x \right)} = - \sin^{4}{\left(x \right)} \cos{\left(x \right)} + \sin^{2}{\left(x \right)} \cos{\left(x \right)}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin4(x)cos(x))dx=sin4(x)cos(x)dx\int \left(- \sin^{4}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u4du\int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              Now substitute uu back in:

              sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

            So, the result is: sin5(x)5- \frac{\sin^{5}{\left(x \right)}}{5}

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u2du\int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            Now substitute uu back in:

            sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

          The result is: sin5(x)5+sin3(x)3- \frac{\sin^{5}{\left(x \right)}}{5} + \frac{\sin^{3}{\left(x \right)}}{3}

        Method #3

        1. Rewrite the integrand:

          (1sin2(x))sin2(x)cos(x)=sin4(x)cos(x)+sin2(x)cos(x)\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} \cos{\left(x \right)} = - \sin^{4}{\left(x \right)} \cos{\left(x \right)} + \sin^{2}{\left(x \right)} \cos{\left(x \right)}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (sin4(x)cos(x))dx=sin4(x)cos(x)dx\int \left(- \sin^{4}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              u4du\int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              Now substitute uu back in:

              sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

            So, the result is: sin5(x)5- \frac{\sin^{5}{\left(x \right)}}{5}

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u2du\int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            Now substitute uu back in:

            sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

          The result is: sin5(x)5+sin3(x)3- \frac{\sin^{5}{\left(x \right)}}{5} + \frac{\sin^{3}{\left(x \right)}}{3}

      So, the result is: 4sin5(x)5+4sin3(x)3- \frac{4 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (3sin2(x)cos(x))dx=3sin2(x)cos(x)dx\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 3 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u2du\int u^{2}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        Now substitute uu back in:

        sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

      So, the result is: sin3(x)- \sin^{3}{\left(x \right)}

    The result is: 4sin5(x)5+sin3(x)3- \frac{4 \sin^{5}{\left(x \right)}}{5} + \frac{\sin^{3}{\left(x \right)}}{3}

  3. Now simplify:

    (512sin2(x))sin3(x)15\frac{\left(5 - 12 \sin^{2}{\left(x \right)}\right) \sin^{3}{\left(x \right)}}{15}

  4. Add the constant of integration:

    (512sin2(x))sin3(x)15+constant\frac{\left(5 - 12 \sin^{2}{\left(x \right)}\right) \sin^{3}{\left(x \right)}}{15}+ \mathrm{constant}


The answer is:

(512sin2(x))sin3(x)15+constant\frac{\left(5 - 12 \sin^{2}{\left(x \right)}\right) \sin^{3}{\left(x \right)}}{15}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                             
 |                                5         3   
 |             2             4*sin (x)   sin (x)
 | cos(3*x)*sin (x) dx = C - --------- + -------
 |                               5          3   
/                                               
3sin5x5sin3x153sin5x5-{{3\,\sin ^5x-5\,\sin ^3x}\over{15}}-{{3\,\sin ^5x}\over{5}}
The graph
1.03.01.21.41.61.82.02.22.42.62.82-2
The answer [src]
       2                  2                  2                  2                                                            
  7*sin (1)*sin(3)   2*cos (3)*sin(9)   2*cos (1)*sin(3)   7*sin (3)*sin(9)   2*cos(1)*cos(3)*sin(1)   2*cos(3)*cos(9)*sin(3)
- ---------------- - ---------------- + ---------------- + ---------------- - ---------------------- + ----------------------
         15                 15                 15                 15                    5                        5           
12sin515sin311512sin535sin3315{{12\,\sin ^51-5\,\sin ^31}\over{15}}-{{12\,\sin ^53-5\,\sin ^33 }\over{15}}
=
=
       2                  2                  2                  2                                                            
  7*sin (1)*sin(3)   2*cos (3)*sin(9)   2*cos (1)*sin(3)   7*sin (3)*sin(9)   2*cos(1)*cos(3)*sin(1)   2*cos(3)*cos(9)*sin(3)
- ---------------- - ---------------- + ---------------- + ---------------- - ---------------------- + ----------------------
         15                 15                 15                 15                    5                        5           
2sin(9)cos2(3)157sin2(1)sin(3)15+7sin2(3)sin(9)15+2sin(3)cos2(1)15+2sin(3)cos(3)cos(9)52sin(1)cos(1)cos(3)5- \frac{2 \sin{\left(9 \right)} \cos^{2}{\left(3 \right)}}{15} - \frac{7 \sin^{2}{\left(1 \right)} \sin{\left(3 \right)}}{15} + \frac{7 \sin^{2}{\left(3 \right)} \sin{\left(9 \right)}}{15} + \frac{2 \sin{\left(3 \right)} \cos^{2}{\left(1 \right)}}{15} + \frac{2 \sin{\left(3 \right)} \cos{\left(3 \right)} \cos{\left(9 \right)}}{5} - \frac{2 \sin{\left(1 \right)} \cos{\left(1 \right)} \cos{\left(3 \right)}}{5}
Numerical answer [src]
0.139793551309643
0.139793551309643
The graph
Integral of cos3x(sinx)^2 dx

    Use the examples entering the upper and lower limits of integration.