Integral of cos3x(sinx)^2 dx
The solution
Detail solution
-
Rewrite the integrand:
sin2(x)cos(3x)=4sin2(x)cos3(x)−3sin2(x)cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4sin2(x)cos3(x)dx=4∫sin2(x)cos3(x)dx
-
Rewrite the integrand:
sin2(x)cos3(x)=(1−sin2(x))sin2(x)cos(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫(−u4+u2)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
The result is: −5u5+3u3
Now substitute u back in:
−5sin5(x)+3sin3(x)
Method #2
-
Rewrite the integrand:
(1−sin2(x))sin2(x)cos(x)=−sin4(x)cos(x)+sin2(x)cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin4(x)cos(x))dx=−∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: −5sin5(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
The result is: −5sin5(x)+3sin3(x)
Method #3
-
Rewrite the integrand:
(1−sin2(x))sin2(x)cos(x)=−sin4(x)cos(x)+sin2(x)cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin4(x)cos(x))dx=−∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: −5sin5(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
The result is: −5sin5(x)+3sin3(x)
So, the result is: −54sin5(x)+34sin3(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin2(x)cos(x))dx=−3∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −sin3(x)
The result is: −54sin5(x)+3sin3(x)
-
Now simplify:
15(5−12sin2(x))sin3(x)
-
Add the constant of integration:
15(5−12sin2(x))sin3(x)+constant
The answer is:
15(5−12sin2(x))sin3(x)+constant
The answer (Indefinite)
[src]
/
| 5 3
| 2 4*sin (x) sin (x)
| cos(3*x)*sin (x) dx = C - --------- + -------
| 5 3
/
−153sin5x−5sin3x−53sin5x
The graph
2 2 2 2
7*sin (1)*sin(3) 2*cos (3)*sin(9) 2*cos (1)*sin(3) 7*sin (3)*sin(9) 2*cos(1)*cos(3)*sin(1) 2*cos(3)*cos(9)*sin(3)
- ---------------- - ---------------- + ---------------- + ---------------- - ---------------------- + ----------------------
15 15 15 15 5 5
1512sin51−5sin31−1512sin53−5sin33
=
2 2 2 2
7*sin (1)*sin(3) 2*cos (3)*sin(9) 2*cos (1)*sin(3) 7*sin (3)*sin(9) 2*cos(1)*cos(3)*sin(1) 2*cos(3)*cos(9)*sin(3)
- ---------------- - ---------------- + ---------------- + ---------------- - ---------------------- + ----------------------
15 15 15 15 5 5
−152sin(9)cos2(3)−157sin2(1)sin(3)+157sin2(3)sin(9)+152sin(3)cos2(1)+52sin(3)cos(3)cos(9)−52sin(1)cos(1)cos(3)
Use the examples entering the upper and lower limits of integration.