Integral of cos3xsin2xdx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(x)cos(x)cos(3x)dx=2∫sin(x)cos(x)cos(3x)dx
-
Rewrite the integrand:
sin(x)cos(x)cos(3x)=4sin(x)cos4(x)−3sin(x)cos2(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4sin(x)cos4(x)dx=4∫sin(x)cos4(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u4)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u4du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cos5(x)
So, the result is: −54cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin(x)cos2(x))dx=−3∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: cos3(x)
The result is: −54cos5(x)+cos3(x)
So, the result is: −58cos5(x)+2cos3(x)
Method #2
-
Rewrite the integrand:
sin(2x)cos(3x)=8sin(x)cos4(x)−6sin(x)cos2(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫8sin(x)cos4(x)dx=8∫sin(x)cos4(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u4)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u4du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cos5(x)
So, the result is: −58cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−6sin(x)cos2(x))dx=−6∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: 2cos3(x)
The result is: −58cos5(x)+2cos3(x)
-
Now simplify:
2cos(x)−10cos(5x)
-
Add the constant of integration:
2cos(x)−10cos(5x)+constant
The answer is:
2cos(x)−10cos(5x)+constant
The answer (Indefinite)
[src]
/ 5
| 3 8*cos (x)
| cos(3*x)*sin(2*x) dx = C + 2*cos (x) - ---------
| 5
/
∫sin(2x)cos(3x)dx=C−58cos5(x)+2cos3(x)
The graph
Use the examples entering the upper and lower limits of integration.