Mister Exam

Integral of cos3xsin2xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                     
 --                     
 2                      
  /                     
 |                      
 |  cos(3*x)*sin(2*x) dx
 |                      
/                       
0                       
0π2sin(2x)cos(3x)dx\int\limits_{0}^{\frac{\pi}{2}} \sin{\left(2 x \right)} \cos{\left(3 x \right)}\, dx
Integral(cos(3*x)*sin(2*x), (x, 0, pi/2))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(x)cos(x)cos(3x)dx=2sin(x)cos(x)cos(3x)dx\int 2 \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(3 x \right)}\, dx = 2 \int \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(3 x \right)}\, dx

      1. Rewrite the integrand:

        sin(x)cos(x)cos(3x)=4sin(x)cos4(x)3sin(x)cos2(x)\sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(3 x \right)} = 4 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          4sin(x)cos4(x)dx=4sin(x)cos4(x)dx\int 4 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 4 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            (u4)du\int \left(- u^{4}\right)\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              u4du=u4du\int u^{4}\, du = - \int u^{4}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

              So, the result is: u55- \frac{u^{5}}{5}

            Now substitute uu back in:

            cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

          So, the result is: 4cos5(x)5- \frac{4 \cos^{5}{\left(x \right)}}{5}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (3sin(x)cos2(x))dx=3sin(x)cos2(x)dx\int \left(- 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 3 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            (u2)du\int \left(- u^{2}\right)\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u33- \frac{u^{3}}{3}

            Now substitute uu back in:

            cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

          So, the result is: cos3(x)\cos^{3}{\left(x \right)}

        The result is: 4cos5(x)5+cos3(x)- \frac{4 \cos^{5}{\left(x \right)}}{5} + \cos^{3}{\left(x \right)}

      So, the result is: 8cos5(x)5+2cos3(x)- \frac{8 \cos^{5}{\left(x \right)}}{5} + 2 \cos^{3}{\left(x \right)}

    Method #2

    1. Rewrite the integrand:

      sin(2x)cos(3x)=8sin(x)cos4(x)6sin(x)cos2(x)\sin{\left(2 x \right)} \cos{\left(3 x \right)} = 8 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 6 \sin{\left(x \right)} \cos^{2}{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        8sin(x)cos4(x)dx=8sin(x)cos4(x)dx\int 8 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 8 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u4)du\int \left(- u^{4}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u4du=u4du\int u^{4}\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        So, the result is: 8cos5(x)5- \frac{8 \cos^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (6sin(x)cos2(x))dx=6sin(x)cos2(x)dx\int \left(- 6 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 6 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u2)du\int \left(- u^{2}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: 2cos3(x)2 \cos^{3}{\left(x \right)}

      The result is: 8cos5(x)5+2cos3(x)- \frac{8 \cos^{5}{\left(x \right)}}{5} + 2 \cos^{3}{\left(x \right)}

  2. Now simplify:

    cos(x)2cos(5x)10\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(5 x \right)}}{10}

  3. Add the constant of integration:

    cos(x)2cos(5x)10+constant\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(5 x \right)}}{10}+ \mathrm{constant}


The answer is:

cos(x)2cos(5x)10+constant\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(5 x \right)}}{10}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                            5   
 |                                 3      8*cos (x)
 | cos(3*x)*sin(2*x) dx = C + 2*cos (x) - ---------
 |                                            5    
/                                                  
sin(2x)cos(3x)dx=C8cos5(x)5+2cos3(x)\int \sin{\left(2 x \right)} \cos{\left(3 x \right)}\, dx = C - \frac{8 \cos^{5}{\left(x \right)}}{5} + 2 \cos^{3}{\left(x \right)}
The graph
0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.52-2
The answer [src]
-2/5
25- \frac{2}{5}
=
=
-2/5
25- \frac{2}{5}
-2/5
Numerical answer [src]
-0.4
-0.4

    Use the examples entering the upper and lower limits of integration.