0 / | | cos(3*x - 5) dx | / -oo
Integral(cos(3*x - 5), (x, -oo, 0))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | sin(3*x - 5) | cos(3*x - 5) dx = C + ------------ | 3 /
1 sin(5) 1 sin(5) <- - - ------, - - ------> 3 3 3 3
=
1 sin(5) 1 sin(5) <- - - ------, - - ------> 3 3 3 3
AccumBounds(-1/3 - sin(5)/3, 1/3 - sin(5)/3)
Use the examples entering the upper and lower limits of integration.