Mister Exam

Other calculators

Integral of (cos2x+1)^3sin2xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                            
  /                            
 |                             
 |                3            
 |  (cos(2*x) + 1) *sin(2*x) dx
 |                             
/                              
0                              
$$\int\limits_{0}^{1} \left(\cos{\left(2 x \right)} + 1\right)^{3} \sin{\left(2 x \right)}\, dx$$
Integral((cos(2*x) + 1)^3*sin(2*x), (x, 0, 1))
The graph
The answer [src]
          2         3                  4   
15   3*cos (2)   cos (2)   cos(2)   cos (2)
-- - --------- - ------- - ------ - -------
8        4          2        2         8   
$$- \frac{3 \cos^{2}{\left(2 \right)}}{4} - \frac{\cos^{4}{\left(2 \right)}}{8} - \frac{\cos^{3}{\left(2 \right)}}{2} - \frac{\cos{\left(2 \right)}}{2} + \frac{15}{8}$$
=
=
          2         3                  4   
15   3*cos (2)   cos (2)   cos(2)   cos (2)
-- - --------- - ------- - ------ - -------
8        4          2        2         8   
$$- \frac{3 \cos^{2}{\left(2 \right)}}{4} - \frac{\cos^{4}{\left(2 \right)}}{8} - \frac{\cos^{3}{\left(2 \right)}}{2} - \frac{\cos{\left(2 \right)}}{2} + \frac{15}{8}$$
15/8 - 3*cos(2)^2/4 - cos(2)^3/2 - cos(2)/2 - cos(2)^4/8
Numerical answer [src]
1.98547471830354
1.98547471830354

    Use the examples entering the upper and lower limits of integration.